用户名: 密码: 验证码:
Dibenzothiophene-S,S-dioxide and Bispyridinium-Based Cationic Polyfluorene Derivative as an Efficient Cathode Modifier for Polymer Solar Cells
详细信息    查看全文
文摘
A novel n-type conjugated polymer containing dibenzothiophene-S,S-dioxide (FSO), bispyridinium, and fluorene scaffolds in the backbone (PFSOPyCl) was synthesized and used in the cathode interfacial layers (CILs) of conventional polymer solar cells (PSCs). The high electron affinities and large planar structures of the FSO and bispyridinium units endowed this polymer with good energy level alignments with [6,6]-phenyl-C71 butyric acid methyl ester (PC71BM) and metal cathode, and excellent electron transport and extraction properties. Polymer solar cells (PSCs) based on the poly[N-9″-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT):PC71BM system with PFSOPyCl CIL exhibited simultaneous enhancement in open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF), while the power conversion efficiency increased from 5.47% to 6.79%, relative to the bare Al device. Besides, PSC based on the poly[4,8-bis(2-ethylhexyloxyl)benzo[1,2-b:4,5-b′]dithio-phene-2,6-diyl-alt-ethylhexyl-3-fluorothithieno [3,4-b]thiophene-2-carboxylate-4,6-diyl] (PTB7):PC71BM system achieved a PCE of 8.43% when using PFSOPyCl as CIL. Hence, PFSOPyCl is a promising candidate CIL for PSCs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700