用户名: 密码: 验证码:
Sustained Local Release of NGF from a Chitosan–Sericin Composite Scaffold for Treating Chronic Nerve Compression
详细信息    查看全文
文摘
Chronic nerve compression (CNC), a common form of peripheral nerve injury, always leads to chronic peripheral nerve pain and dysfunction. Current available treatments for CNC are ineffective as they usually aim to alleviate symptoms at the acute phase with limited capability toward restoring injured nerve function. New approaches for effective recovery of CNC injury are highly desired. Here we report for the first time a tissue-engineered approach for the repair of CNC. A genipin cross-linked chitosan–sericin 3D scaffold for delivering nerve growth factor (NGF) was designed and fabricated. This scaffold combines the advantages of both chitosan and sericin, such as high porosity, adjustable mechanical properties and swelling ratios, the ability of supporting Schwann cells growth, and improving nerve regeneration. The degradation products of the composite scaffold upregulate the mRNA levels of the genes important for facilitating nerve function recovery, including glial-derived neurotrophic factor (GDNF), early growth response 2 (EGR2), and neural cell adhesion molecule (NCAM) in Schwann cells, while down-regulating two inflammatory genes’ mRNA levels in macrophages, tumor necrosis factor alpha (TNF-α), and interleukin-1 beta (IL-1β). Importantly, our tissue-engineered strategy achieves significant nerve functional recovery in a preclinical CNC animal model by decreasing neuralgia, improving nerve conduction velocity (NCV), accelerating microstructure restoration, and attenuating gastrocnemius muscles dystrophy. Together, this work suggests a promising clinical alternative for treating chronic peripheral nerve compression injury.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700