用户名: 密码: 验证码:
Porphyrin-Based Porous Organic Frameworks as a Biomimetic Catalyst for Highly Efficient Colorimetric Immunoassay
详细信息    查看全文
文摘
Herein, we synthesized a cost-effective iron porphyrin (FePor)-based covalent organic polymer (COP), FePor-TFPA-COP, through an easy aromatic substitution reaction between pyrrole and tris(4-formylphenyl)amine (TFPA). The triangular pyramid-shaped, N-centric structure of TFPA facilitated the formation of FePor-TFPA-COP with three-dimensional porous structure, larger surface area, and abundant surface catalytically active sites. FePor-TFPA-COP exhibited strong intrinsic peroxidase activity toward a classical peroxidase substrate, 3,3′,5,5′-tetramethylbenzidine (TMB), in the presence of H2O2. Compared with horseradish peroxidase (HRP), FePor-TFPA-COP exhibited several advantages such as easy storage, high sensitivity, and prominently chemical and catalytic stability under the harsh conditions, which guaranteed the accuracy and reliability of measurements. Utilizing the excellent catalytic activity, a FePor-TFPA-COP-based colorimetric immunoassay was first established for α-fetoprotein (AFP) detection and showed high sensitivity, stability, and acceptable reproducibility. The linear response range for AFP was 5 pg/mL to 100 ng/mL and the detection limitation was 1 pg/mL. The routine provided a brilliant biomimetic catalyst to develop the nonenzyme immunoassay. More importantly, the high chemical and catalytic stability and sensitivity facilitated future practical applications under various conditions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700