用户名: 密码: 验证码:
Can a Black Phosphorus Schottky Barrier Transistor Be Good Enough?
详细信息    查看全文
文摘
Experimental two-dimensional (2D) black phosphorus (BP) transistors typically appear in the form of Schottky barrier field effect transistors (SBFETs), but their performance limit remains open. We investigate the performance limit of monolayer BP SBFETs in the sub-10 nm scale by using ab initio quantum transport simulations. The devices with 2D graphene electrodes are apparently superior to those with bulk Ti electrodes due to their smaller and tunable Schottky barrier heights and the absence of metal induced gap states in the channels. With graphene electrodes, the performance limit of the sub-10 nm monolayer BP SBFETs outperforms the monolayer MoS2, carbon nanotube, and advanced silicon transistors and even can meet the requirements of both high performance and low power logic applications of the next decade in the latest International Technology Roadmap for Semiconductors. It appears that the ML BP SBFETs have the best intrinsic device performance among the reported sub-10 nm 2D material SBFETs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700