用户名: 密码: 验证码:
Ultrasensitive and Highly Selective Photodetections of UV-A Rays Based on Individual Bicrystalline GaN Nanowire
详细信息    查看全文
文摘
The detection of UV-A rays (wavelength of 320–400 nm) using functional semiconductor nanostructures is of great importance in either fundamental research or technological applications. In this work, we report the catalytic synthesis of peculiar bicrystalline GaN nanowires and their utilization for building high-performance optoelectronic nanodevices. The as-prepared UV-A photodetector based on individual bicrystalline GaN nanowire demonstrates a fast photoresponse time (144 ms), a high wavelength selectivity (UV-A light response only), an ultrahigh photoresponsivity of 1.74 × 107 A/W and EQE of 6.08 × 109%, a sensitivity of 2 × 104%, and a very large on/off ratio of more than two orders, as well as robust photocurrent stability (photocurrent fluctuation of less than 7% among 4000 s), showing predominant advantages in comparison with other peer semiconductor photodetectors. The outstanding optoelectronic performance of the bicrystalline GaN nanowire UV-A photodetector is further analyzed based on a detailed high-resolution transmission electron microscope (HRTEM) study, and the two separated crystal domains within the GaN nanowires are believed to provide separated and rapid carrier transfer channels. This work paves a solid way toward the integration of high-performance optoelectronic nanodevices based on bicrystalline or horizontally aligned one-dimensional semiconductor nanostructures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700