用户名: 密码: 验证码:
Novel Platform of Cardiomyocyte Culture and Coculture via Fibroblast-Derived Matrix-Coupled Aligned Electrospun Nanofiber
详细信息    查看全文
文摘
For cardiac tissue engineering, much attention has been given to the artificial cardiac microenvironment in which anisotropic design of scaffold and extracellular matrix (ECM) are the major cues. Here we propose poly(l-lactide-co-caprolactone) and fibroblast-derived ECM (PLCL/FDM), a hybrid scaffold that combines aligned electrospun PLCL fibers and FDM. Fibroblasts were grown on the PLCL fibers for 5–7 days and subsequently decellularized to produce PLCL/FDM. Various analyses confirmed aligned, FDM-deposited PLCL fibers. Compared to fibronectin (FN)-coated electrospun PLCL fibers (control), H9c2 cardiomyoblast differentiation was significantly effective, and neonatal rat cardiomyocyte (CM) phenotype and maturation was improved on PLCL/FDM. Moreover, a coculture platform was created using multilayer PLCL/FDM in which two different cells make indirect or direct cell–cell contacts. Such coculture platforms demonstrate their feasibility in terms of higher cell viability, efficiency of target cell harvest (>95% in noncontact; 85% in contact mode), and molecular diffusion through the PLCL/FDM layer. Coculture of primary CMs and fibroblasts exhibited much better CM phenotype and improvement of CM maturity upon either direct or indirect interactions, compared to the conventional coculture systems (transwell insert and tissue culture plate (TCP)). Taken together, our platform should be very useful and have significant contributions in investigating some scientific or practical issues of crosstalks between multiple cell types.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700