用户名: 密码: 验证码:
High Visible Photoelectrochemical Activity of Ag Nanoparticle-Sandwiched CdS/Ag/ZnO Nanorods
详细信息    查看全文
文摘
We report on the sensitizing of CdS-coated ZnO (CdS/ZnO) nanorods (NRs) by Ag nanoparticles (NPs) embedded between the CdS coating and the ZnO nanorod and the improved optical and photoelectrochemical properties of the Ag NP-sandwiched nanostructure CdS/Ag/ZnO NRs. The CdS/Ag/ZnO NRs were fabricated by growing Ag NPs on hydrothermally grown ZnO NRs and subsequently depositing CdS coatings followed by subsequent N2 annealing. The structure of the fabricated CdS/Ag/ZnO NRs was characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman backscattering, revealing that the ZnO NRs and the CdS coatings are both structured with hexagonal wurtzite and the Ag NPs contact well with ZnO and CdS. Optical properties were evaluated by measuring optical absorption and photoluminescence, showing that the Ag NPs behave well as sensitizers for optical property improvement and the CdS/Ag/ZnO NRs exhibit better photoresponse in a wide spectral region than CdS/ZnO because of plasmon-enhanced absorption due to the embedment of Ag NPs. The Ag NPs also serve as electron relays from CdS to ZnO, facilitating electron transfer from the CdS coatings to the ZnO NRs. The excellent photoresponse and efficient electron transfer make the CdS/Ag/ZnO NRs highly photoelectrochemically active. The CdS/Ag/ZnO NRs fabricated on indium–tin oxide present much better photoelectrochemical performance as photoanodes working in the visible region than CdS/ZnO NRs without Ag NPs. Under visible illumination, a maximum optical-to-chemical conversion efficiency of 3.13% is obtained for CdS/Ag/ZnO NR photoanodes against 1.35% for CdS/ZnO NR photoanodes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700