用户名: 密码: 验证码:
Efficient Photocurrent Enhancement from Porphyrin Molecules on Plasmonic Copper Arrays: Beneficial Utilization of Copper Nanoanntenae on Plasmonic Photoelectric Conversion Systems
详细信息    查看全文
文摘
We demonstrated the usefulness of Cu light-harvesting plasmonic nanoantennae for the development of inexpensive and efficient artificial organic photoelectric conversion systems. The systems consisted of the stacked structures of layers of porphyrin as a dye molecule, oxidation-suppressing layers, and plasmonic Cu arrayed electrodes. To accurately evaluate the effect of Cu nanoantenna on the porphyrin photocurrent, the production of Cu2O by the spontaneous oxidation of the electrode surfaces, which can act as a photoexcited species under visible light irradiation, was effectively suppressed by inserting the ultrathin linking layers consisting of 16-mercaptohexadecanoic acid, titanium oxide, and poly(vinyl alcohol) between the electrode surface and porphyrin molecules. The reflection spectra in an aqueous environment of the arrayed electrodes, which were prepared by thermally depositing Cu on two-dimensional colloidal crystals of silica with diameters of 160, 260, and 330 nm, showed clear reflection dips at 596, 703, and 762 nm, respectively, which are attributed to the excitation of localized surface plasmon resonance (LSPR). While the first dip lies within the wavelengths where the imaginary part of the Cu dielectric function is moderately large, the latter two dips lie within a region of a quite small imaginary part. Consequently, the LSPR excited at the red region provided a particularly large enhancement of porphyrin photocurrent at the Q-band (ca. 59-fold), compared to that on a Cu planar electrode. These results strongly suggest that the plasmonic Cu nanoantennae contribute to the substantial improvement of photoelectric conversion efficiency at the wavelengths, where the imaginary part of the dielectric function is small.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700