用户名: 密码: 验证码:
Roll-to-Roll Continuous Manufacturing Multifunctional Nanocomposites by Electric-Field-Assisted “Z” Direction Alignment of Graphite Flakes in Poly(dimethylsiloxane)
详细信息    查看全文
  • 作者:Yuanhao Guo ; Yuwei Chen ; Enmin Wang ; Miko Cakmak
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2017
  • 出版时间:January 11, 2017
  • 年:2017
  • 卷:9
  • 期:1
  • 页码:919-929
  • 全文大小:847K
  • ISSN:1944-8252
文摘
A roll-to-roll continuous process was developed to manufacture large-scale multifunctional poly(dimethylsiloxane) (PDMS) films embedded with thickness direction (“Z” direction) aligned graphite nanoparticles by application of electric field. The kinetics of particle “Z” alignment and chain formation was studied by tracking the real-time change of optical light transmission through film thickness direction. Benefiting from the anisotropic structure of aligned particle chains, the electrical and thermal properties of the nanocomposites were dramatically enhanced through the thickness direction as compared to those of the nanocomposites containing the same particle loading without electrical field alignment. With 5 vol % graphite loading, 250 times higher electrical conductivity, 43 times higher dielectric permittivity, and 1.5 times higher thermal conductivity was achieved in the film thickness direction after the particles were aligned under electrical field. Moreover, the aligned nanocomposites with merely 2 vol % graphite particles exhibit even higher electric conductivity and dielectric permittivity than those of the nonaligned nanocomposites at random percolation threshold (10 vol % particles), as the “electric-field-directed” percolation threshold concentration is substantially decreased using this process. As the graphite loading increases to 20 vol %, the aligned nanocomposites exhibit thermal conductivity as high as 6.05 W/m·K, which is 35 times the thermal conductivity of pure matrix. This roll-to-roll electric field continuous process provides a simple, low-cost, and commercially viable method to manufacture multifunctional nanocomposites for applications as embedded capacitor, electromagnetic (EM) shielding, and thermal interface materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700