用户名: 密码: 验证码:
Optically Active AuNR@Ag Core–Shell Nanoparticles and Hierarchical Assembly via DNA-Mediated Surface Chemistry
详细信息    查看全文
  • 作者:Xiang Lan ; Qiangbin Wang
  • 刊名:ACS Applied Materials & Interfaces
  • 出版年:2016
  • 出版时间:December 21, 2016
  • 年:2016
  • 卷:8
  • 期:50
  • 页码:34598-34602
  • 全文大小:344K
  • ISSN:1944-8252
文摘
To manipulate the chiroptical activity of plasmonic metal nanoparticles (MNPs) and control their hierarchical self-assembly are of great fundamental and technological significance; however, they remain a big challenge. Here, we in situ fabricated anisotropic bimetallic AuNR@Ag core–shell nanoparticles (AuNR@Ag NPs) capped with designed DNA molecules and systematically studied the plasmonic chiroptical properties of the individual AuNR@Ag NPs and their assemblies. The AuNR@Ag NPs were facilely prepared by employing DNA-capped Au nanorods (AuNRs) as seeds to grow Ag shells, and it was found that the as-prepared AuNR@Ag NP surfaces were encoded by the original DNA molecules through an in situ DNA “desorption and re-adsorption” dynamic process during shell overgrowth. This observation is distinctly different from the previous results that DNA molecules were embedded in the Ag shell. Interestingly, with this in situ DNA-mediated surface chemistry, plasmonic chiroptical activities were observed from individual AuNR@Ag NPs, and the chiroptical responses were conveniently manipulated over a broad optical window by simply modifying the shape anisotropy of the building blocks. Furthermore, the DNA molecules capped on the AuNR@Ag NP surface facilitate the hierarchical assembly of homogeneous and heterogeneous nanostructures with distinct chiral optical responses.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700