用户名: 密码: 验证码:
Microwave-Assisted Synthesis of Highly Dispersed PtCu Nanoparticles on Three-Dimensional Nitrogen-Doped Graphene Networks with Remarkably Enhanced Methanol Electrooxidation
详细信息    查看全文
文摘
A well-dispersed PtCu alloy nanoparticles (NPs) on three-dimensional nitrogen-doped graphene (PtCu/3D N-G) electrocatalyst has been successfully synthesized by a conventional hydrothermal method combined with a high-efficiency microwave-assisted polyol process. The morphology, composition, and structures are well-characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, X-ray powder diffraction, and X-ray photoelectron spectroscopy. Cyclic voltammograms illustrate that the as-prepared PtCu/3D N-G electrocatalyst possesses the larger electrochemical active surface area, lower onset potential, higher current density, and better tolerance to CO poisoning than PtCu NPs on reduced graphene oxide and XC-72 carbon black in acid solution. In addition, long-time chronoamperometry reveals that the PtCu/3D N-G catalyst exhibits excellent stability even longer than 60 min toward acid methanol electrooxidation. The remarkably enhanced performance is related to the combined effects of uniformly interconnected three-dimensional porous graphene networks, nitrogen doping, modified Pt alloy NPs, and strong binding force between Pt alloy NPs and 3D N-G structures.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700