用户名: 密码: 验证码:
Facet-Dependent Property of Sequentially Deposited Perovskite Thin Films: Chemical Origin and Self-Annihilation
详细信息    查看全文
文摘
Quantification of intergrain length scale properties of CH3NH3PbI3 (MAPbI3) can provide further understanding of material physics, leading to improved device performance. In this work, we noticed that two typical types of facets appear in sequential deposited perovskite (SDP) films: smooth and steplike morphologies. By mapping the surface potential as well as the photoluminescence (PL) peak position, we revealed the heterogeneity of SDP thin films that smooth facets are almost intrinsic with a PL peak at 775 nm, while the steplike facets are p-type-doped with 5-nm blue-shifted PL peak. Considering the reaction process, we propose that the smooth facets have well-defined crystal lattices that resulted from the interfacial reaction between MAI and PbI2 domains containing low trap states density. The steplike facets are MAI-rich originated from the grain boundaries of PbI2 film and own more trap states. Conversion of steplike facets to smooth facets can be controlled by increasing the reaction time through Ostwald ripening. The improved stability, photoresponsivity up to 0.3 A/W, on/off ratio up to 3900, and decreased photo response time to ∼160 μs show that the trap states can be annihilated effectively to improve the photoelectrical conversion with prolonged reaction time and elimination of steplike facets. Our findings demonstrate the relationship between the facet heterogeneity of SDP films and crystal growth process for the first time, and imply that the systematic control of crystal grain modification will enable amelioration of crystallinity for more-efficient perovskite photoelectrical applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700