用户名: 密码: 验证码:
Structure and Function of a C–C Bond Cleaving Oxygenase in Atypical Angucycline Biosynthesis
详细信息    查看全文
文摘
C–C bond ring cleaving oxygenases represent a unique family of enzymes involved in the B ring cleavage reaction only observed in atypical angucycline biosynthesis. B ring cleavage is the key reaction leading to dramatic divergence in the final structures of atypical angucyclines. Here, we present the crystal structure of AlpJ, the first structure of this family of enzymes. AlpJ has been verified as the enzyme catalyzing C–C bond cleavage in kinamycin biosynthesis. The crystal structure of the AlpJ monomer resembles the dimeric structure of ferredoxin-like proteins. The N- and C-terminal halves of AlpJ are homologous, and both contain a putative hydrophobic substrate binding pocket in the “closed” and “open” conformations, respectively. Structural comparison of AlpJ with ActVA-Orf6 and protein–ligand docking analysis suggest that the residues including Asn60, Trp64, and Trp181 are possibly involved in substrate recognition. Site-directed mutagenesis results supported our hypothesis, as mutation of these residues led to nearly a complete loss of the activity of AlpJ. Structural analysis also revealed that AlpJ possesses an intramolecular domain–domain interface, where the residues His50 and Tyr178 form a hydrogen bond that probably stabilizes the three-dimensional structure of AlpJ. Site-directed mutagenesis showed that the two residues, His50 and Tyr178, were vital for the activity of AlpJ. Our findings shed light on the structure and catalytic mechanism of the AlpJ family of oxygenases, which presumably involves two active sites that might function in a cooperative manner.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700