用户名: 密码: 验证码:
Neuroprotective Effect of a New 7,8-Dihydroxycoumarin-Based Fe2+/Cu2+ Chelator in Cell and Animal Models of Parkinson’s Disease
详细信息    查看全文
文摘
Disturbed iron homeostasis, often coupled to mitochondrial dysfunction, plays an important role in the progression of common neurodegenerative diseases such as Parkinson’s disease (PD). Recent studies have underlined the relevance of iron chelation therapy for the treatment of these diseases. Here we describe the synthesis, chemical, and biological characterization of the multifunctional chelator 7,8-dihydroxy-4-((methylamino)methyl)-2H-chromen-2-one (DHC12). Metal selectivity of DHC12 was Cu2+ ∼ Fe2+ > Zn2+ > Fe3+. No binding capacity was detected for Hg2+, Co2+, Ca2+, Mn2+, Mg2+, Ni2+, Pb2+, or Cd2+. DHC12 accessed cells colocalizing with Mitotracker Orange, an indication of mitochondrial targeting. In addition, DHC12 chelated mitochondrial and cytoplasmic labile iron. Upon mitochondrial complex I inhibition, DHC12 protected plasma membrane and mitochondria against lipid peroxidation, as detected by the reduced formation of 4-hydroxynonenal adducts and oxidation of C11-BODIPY581/591. DHC12 also blocked the decrease in mitochondrial membrane potential, detected by tetramethylrhodamine distribution. DHC12 inhibited MAO-A and MAO-B activity. Oral administration of DHC12 to mice (0.25 mg/kg body weight) protected substantia nigra pars compacta (SNpc) neurons against MPTP-induced death. Taken together, our results support the concept that DHC12 is a mitochondrial-targeted neuroprotective iron–copper chelator and MAO-B inhibitor with potent antioxidant and mitochondria protective activities. Oral administration of low doses of DHC12 is a promising therapeutic strategy for the treatment of diseases with a mitochondrial iron accumulation component, such as PD.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700