用户名: 密码: 验证码:
Controlling Citrate Synthase Expression by CRISPR/Cas9 Genome Editing for n-Butanol Production in Escherichia coli
详细信息    查看全文
文摘
Genome editing using CRISPR/Cas9 was successfully demonstrated in Esherichia coli to effectively produce n-butanol in a defined medium under microaerobic condition. The butanol synthetic pathway genes including those encoding oxygen-tolerant alcohol dehydrogenase were overexpressed in metabolically engineered E. coli, resulting in 0.82 g/L butanol production. To increase butanol production, carbon flux from acetyl-CoA to citric acid cycle should be redirected to acetoacetyl-CoA. For this purpose, the 5′-untranslated region sequence of gltA encoding citrate synthase was designed using an expression prediction program, UTR designer, and modified using the CRISPR/Cas9 genome editing method to reduce its expression level. E. coli strains with decreased citrate synthase expression produced more butanol and the citrate synthase activity was correlated with butanol production. These results demonstrate that redistributing carbon flux using genome editing is an efficient engineering tool for metabolite overproduction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700