用户名: 密码: 验证码:
Control of PLA Stereoisomers-Based Polyurethane Elastomers as Highly Efficient Shape Memory Materials
详细信息    查看全文
文摘
Poly(lactic acid) (PLA) has received increasing attention in the development of shape memory polymers (SMPs) due to its excellent physical properties and good biocompatibility. However, the intrinsically increased crystallinity of PLA at higher deformation ratios still remains a significant challenge, which remarkably restricts the chain mobility and reduces shape recovery efficiency. Being different from other types of biodegradable polymers, the diverse isomeric forms of PLA have provided great opportunities for modulation of PLA toward a favorable property by incorporating different PLA stereoisomers in one macromolecular architecture. In this paper, we report a completely amorphous PLA poly(ester urethane) elastomer that exhibits excellent shape fixity (>99%) and shape recovery (>99%) in a time frame of seconds. By means of adjusting the stereoisomeric ratios and control over architecture, the resultant poly(PLLA/PDLLA urethane)s (PLDU) elastomers show a single glass transition temperature (Tg), as the only thermal event, in the range of 38–46 °C in a predictable manner. The elastic moduli of PLDU elastomers display a 100-fold loss during the sharp transition from a glassy to a rubbery state with temperature alternation across their corresponding Tg, indicating a successful manipulation of the thermo-mechanical properties by temperature as required in thermally induced SMPs. In addition, all samples display a typical elastomeric behavior with elongation at break (εb) greater than 400%. The effect of the stereoisomer content on the tensile modulus and elastic mechanical behavior were also systematically investigated. Together with the prominent degradation property, the new PLDU elastomers developed in this study show great potential for biomedical applications as shape memory implants.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700