用户名: 密码: 验证码:
Single-Crystal Silicon Optical Fiber by Direct Laser Crystallization
详细信息    查看全文
文摘
Semiconductor core optical fibers with a silica cladding are of great interest in nonlinear photonics and optoelectronics applications. Laser crystallization has been recently demonstrated for crystallizing amorphous silicon fibers into crystalline form. Here we explore the underlying mechanism by which long single-crystal silicon fibers, which are novel platforms for silicon photonics, can be achieved by this process. Using finite element modeling, we construct a laser processing diagram that reveals a parameter space within which single crystals can be grown. Utilizing this diagram, we illustrate the creation of single-crystal silicon core fibers by laser crystallizing amorphous silicon deposited inside silica capillary fibers by high-pressure chemical vapor deposition. The single-crystal fibers, up to 5.1 mm long, have a very well-defined core/cladding interface and a chemically pure silicon core that leads to very low optical losses down to ∼0.47–1 dB/cm at the standard telecommunication wavelength (1550 nm). It also exhibits a photosensitivity that is comparable to bulk silicon. Creating such laser processing diagrams can provide a general framework for developing single-crystal fibers in other materials of technological importance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700