用户名: 密码: 验证码:
Synthesis of Heparin-Immobilized, Magnetically Addressable Cellulose Nanofibers for Biomedical Applications
详细信息    查看全文
文摘
Magnetically responsive heparin-immobilized cellulose nanofiber composites were synthesized by wet-wet electrospinning from a nonvolatile, room-temperature ionic liquid (RTIL), 1-methyl-3-methylimidazolium acetate ([EMIM][Ac]), into an aqueous coagulation bath. Superparamagnetic magnetite (Fe3O4) nanoparticles were incorporated into the fibers to enable the manipulation of both dry and wet nanofiber membranes with an external magnetic field. Three synthetic routes were developed to prepare three distinct types of nanocomposite fibers: cellulose-Fe3O4–heparin monofilament fibers, cellulose-Fe3O4–heparin core–shell fibers with heparin covalently immobilized on the fiber surface, and cellulose -Fe3O4 core–shell fibers with heparin physically immobilized on the fiber surface. These nanocomposite fibers were characterized by electron microscopy to confirm their coaxial structure and the fiber dimensions (fiber diameter 0.2–2.0 μm with 0.1–1.1 μm core diameter). Thermogravimetric analysis, liquid chromatography–mass spectrometry, Fourier transform infrared and X-ray diffraction spectroscopy provided detailed compositional analysis for these nanocomposite fibers, confirming the presence of each component and the surface accessibility of the heparin. The anticoagulant activity of immobilized heparin on the nanocomposite fiber surfaces was evaluated and confirmed by antifactor Xa and antifactor IIa assays.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700