用户名: 密码: 验证码:
Conditioning of Cardiovascular Tissue Using a Noncontact Magnetic Stretch Bioreactor with Embedded Magnetic Nanoparticles
详细信息    查看全文
文摘
Bioreactor systems, an integral component of tissue engineering, are designed to simulate complex in vivo conditions to impart functionality to artificial tissue. All standard forms of stretch bioreactors require physical contact with artificial heart muscle (AHM). However, we believe that noncontact stretch bioreactors have the potential to lead to higher functional benefit of AHM. Our work is focused on the fabrication of a noncontact magnetic stretch bioreactor (MSB) that uses magnetic nanoparticles to simulate stretch conditions to impart functionality. During our development of this system, we applied magnetically induced stretch conditioning through application of an oscillating magnetic field to a ferromagnetic heart muscle model. Fibrin scaffolds were loaded with magnetic nanoparticles prior to tissue model formation. Oscillating magnetic fields were applied by a novel bioreactor system through displacement of a neodymium magnet. The addition of commercially obtained iron(III) oxide (Fe2O3) in sufficient quantities to allow for physiologically relevant stretches (15% axial displacement) caused toxic effects after 4 days of culture. In contrast, loading scaffolds with monodispersed, high-saturation-magnetization magnetite (Fe3O4) nanoparticles specifically prepared for these experiments increased the field strength of the magnetized fibrin 10-fold over polydispersed, low-saturation magnetization, Fe2O3. Additionally, loading with Fe3O4 enabled magnetically actuated stretching with markedly reduced toxicity over 8 days of culture. Using a 20% stretch 0.5 Hz protocol, we observed a significant increase in twitch force over controls at days 4 and 6. This work provides a technology for controlled noncontact mechanical stretch to condition AHM.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700