用户名: 密码: 验证码:
A Defect in Zinc Finger Protein Double B-box?1a (DBB1a) Causes Abnormal Floral Development in Arabidopsis
详细信息    查看全文
  • 作者:Qiming Wang (1) (2)
    Xiaoju Tu (1)
    Keqin Deng (1) (2)
    Jianxin Zeng (1) (2)
    Xiaoying Zhao (1)
    Dongying Tang (1)
    Xuanming Liu (1) (2)
  • 关键词:Arabidopsis thaliana ; Double B ; box type zinc finger ; Flower development
  • 刊名:Journal of Plant Biology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:52
  • 期:6
  • 页码:543-549
  • 全文大小:316KB
  • 参考文献:1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052-056 CrossRef
    2. Ang LH, Deng XW (1994) Regulatory hierarchy of photomorphogenic loci: allele-specific and light-dependent interaction between the HY5 and COP1 loci. Plant Cell 6:613-28 CrossRef
    3. Chae E, Tan QKG, Hill TA, Irish VF (2008) An / Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135:1235-245 CrossRef
    4. Chen X (2004) A MicroRNA as a translational repressor of APETALA2 in / Arabidopsis flower development. Science 303:2022-025 CrossRef
    5. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31-7 CrossRef
    6. Datta S, Hettiarachchi C, Johansson H, Holm M (2007) SALT TOLERANCE HOMOLOG2, a B-box protein in / Arabidopsis that activates transcription and positively regulates light-mediated development. Plant Cell 19:3242-255 CrossRef
    7. Datta S, Johansson H, Hettiarachchi C, Irigoyen ML, Desai M, Rubio V, Holm M (2008) LZF1/SALT TOLERANCE HOMOLOG3, an / Arabidopsis B-box protein involved in light-dependent development and gene expression, undergoes COP1-mediated ubiquitination. Plant Cell 20:2324-338 CrossRef
    8. Desfeux C, Clough SJ, Bent AF (2000) Female reproductive tissues are the primary target of / Agrobacterium-mediated transformation by the / Arabidopsis floral-dip method. Plant Physiol 123:895-04 CrossRef
    9. Elmayan T, Balzergue S, Beon F, Bourdon V, Daubremet J, Guenet Y, Mourrain P, Palauqui J-C, Vernhettes S, Vialle T, Wostrikoff K, Vaucheret H (1998) / Arabidopsis mutants impaired in cosuppression. Plant Cell 10:1747-758 CrossRef
    10. Irish VF (2008) The / Arabidopsis petal: a model for plant organogenesis. Trends Plant Sci 13:430-36 CrossRef
    11. Jens F, Sundstron NNKGVFI (2006) Direct regulation of the floral homeotic / APETALA1 gene by / APETALA3 and / PISTILLATA in / Arabidopsis. Plant J 46:593-00 CrossRef
    12. Jung J-H, Seo Y-H, Seo PJ, Reyes JL, Yun J, Chua N-H, Park C-M (2007) The GIGANTEA-regulated MicroRNA172 mediates photoperiodic flowering independent of CONSTANS in / Arabidopsis. Plant Cell 19:2736-748 CrossRef
    13. Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the / APETALA3 and / PISTILLATA MADS-box gene lineages. Genetics 149:765-83
    14. Krizek BA, Meyerowitz EM (1996) The / Arabidopsis homeotic genes / APETALA3 and / PISTILLATA are sufficient to provide the B class organ identity function. Development 122:11-2
    15. Kumagai T, Ito S, Nakamichi N, Niwa Y, Murakami M, Yamashino T, Mizuno T (2008) The common function of a novel subfamily of B-box zinc finger proteins with reference to circadian-associated events in / Arabidopsis thaliana. Biosci Biotechnol Biochem 72:1539-549 CrossRef
    16. Lamb RS, Hill TA, Tan QKG, Irish VF (2002) Regulation of / APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079-086
    17. Li Zhao YKTTDXC (2007) miR172 regulates stem cell fate and defines the inner boundary of / APETALA3 and / PISTILLATA expression domain in / Arabidopsis floral meristems. Plant J 51:840-49 CrossRef
    18. Lin C (2002) Blue light receptors and signal transduction. Plant Cell 14:S207-25
    19. Lohmann JU, Weigel D (2002) Building Beauty: the genetic control of floral patterning. Dev Cell 2:135-42 CrossRef
    20. Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G (2005) Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in / Arabidopsis. Plant Cell 17:2255-270 CrossRef
    21. Nag A, Yang Y, Jack T (2007) / DORNR?SCHEN-LIKE, an AP2 gene, is necessary for stamen emergence in / Arabidopsis. Plant Mol Biol 65:219-32 CrossRef
    22. Nagaoka S, Takano T (2003) Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in / Arabidopsis. J Exp Bot 54:2231-237 CrossRef
    23. Ohno CK, Reddy GV, Heisler MGB, Meyerowitz EM (2004) The / Arabidopsis JAGGED gene encodes a zinc finger protein that promotes leaf tissue development. Development 131:1111-122 CrossRef
    24. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of / Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847-57 CrossRef
    25. Richmond TA, Bleecker AB (1999) A Defect in {beta}-oxidation causes abnormal inflorescence development in / Arabidopsis. Plant Cell 11:1911-924 CrossRef
    26. Siddhartha Kanrar MBBAJCHMSS (2008) Regulatory networks that function to specify flower meristems require the function of homeobox genes PENNYWISE and POUND-FOOLISH in / Arabidopsis. Plant J 54:924-37 CrossRef
    27. Smyth DR, Bowman JL, Meyerowitz EM (1990) Early flower development in / Arabidopsis. Plant Cell 2:755-67 CrossRef
    28. Wenkel S, Turck F, Singer K, Gissot L, Le Gourrierec J, Samach A, Coupland G (2006) CONSTANS and the CCAAT box binding complex share a functionally important domain and interact to regulate flowering of / Arabidopsis. Plant Cell 18:2971-984 CrossRef
    29. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005) Integration of spatial and temporal information during floral induction in / Arabidopsis. Science 309:1056-059 CrossRef
    30. Yang Meiying HHWYGQFLZX (2007) Construction of efficient gene silencing vector harboring lycopene β-cyclase gene. Mol Plant Breeding 5:43-6
    31. Zhang X, Henriques R, Lin S-S, Niu Q-W, Chua N-H (2006) / Agrobacterium-mediated transformation of / Arabidopsis thaliana using the floral dip method. Nat Protocols 1:641-46 CrossRef
  • 作者单位:Qiming Wang (1) (2)
    Xiaoju Tu (1)
    Keqin Deng (1) (2)
    Jianxin Zeng (1) (2)
    Xiaoying Zhao (1)
    Dongying Tang (1)
    Xuanming Liu (1) (2)

    1. Institute of Life Science and Biotechnology, Hunan University, Changsha, 410082, Hunan Province, People’s Republic of China
    2. State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan Province, People’s Republic of China
文摘
The double B-box (DBB) type zinc finger protein has thus far been shown to be involved in photomorphegenesis in Arabidopsis thaliana. Here, we show that DBB1a is expressed in the embryo, cytolden, and flower. Misexpression of DBB1a in mutant plants resulted in abnormal numbers and patterns of floral organs. We further show that DBB1a could regulate expression of several floral homeotic genes, including APETALA 2, APETALA 3, PISTILLATA, and AGAMOUS. Interestingly, expression of the microRNA gene MiR172, which is involved in organ boundary establishment, was also misregulated in the dbb1a mutant plants. Our study identified a previously uncharacterized role of DDB1a in regulation of expression of floral homeotic genes and miR172, which is important for understanding of floral pattern formation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700