用户名: 密码: 验证码:
Heterologous Expression of a Gibberellin 2-Oxidase Gene from Arabidopsis thaliana Enhanced the Photosynthesis Capacity in Brassica napus L.
详细信息    查看全文
  • 作者:Bo Zhou (1)
    Dan Peng (1)
    Jianzhong Lin (1)
    Xingqun Huang (1)
    Wusheng Peng (2)
    Reqing He (1)
    Ming Guo (1)
    Dongying Tang (1)
    Xiaoying Zhao (1)
    Xuanming Liu (1)
  • 关键词:AtGA2ox8 ; Dwarf ; Seed germination ; Chlorophyll content ; The photosynthesis capacity
  • 刊名:Journal of Plant Biology
  • 出版年:2011
  • 出版时间:February 2011
  • 年:2011
  • 卷:54
  • 期:1
  • 页码:23-32
  • 全文大小:644KB
  • 参考文献:1. Agharkar M, Lomba P, Altpeter F, Zhang HN, Kenworthy K, Lange T (2007) Stable expression of / AtGA2ox1 in a low-input turfgrass ( / Paspalum notatum Flugge) reduces bioactive gibberellin levels and improves turf quality under field conditions. Plant Biotechnol J 5:791-01 CrossRef
    2. Ariizumi T, Steber CM (2007) Seed Germination of GA-Insensitive sleepy1 Mutants Does Not Require RGL2 Protein Disappearance in Arabidopsis. The Plant Cell 19:791-04 CrossRef
    3. Biemelt S, Tschiersch H, Sonnewald U (2004) Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Plant Physiol 135:254-65 CrossRef
    4. Dijkstra C, Adams E, Bhattacharya A, Page AF, Anthony P, Kourmpetli ?S, Power JB, Lowe KC, Thomas SG, Hedden P, AL P?, Davey MR (2008) Over-expression of a gibberellin 2-oxidase gene from / Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in / Solanum species. Plant Cell Rep 27:463-70 CrossRef
    5. Dunfield K, Srivastava S, Shah S, Kav NNV (2007) Constitutive expression of ABR17 cDNA enhances germination and promotes early flowering in / Brassica napus. Plant Sci 173:521-32 CrossRef
    6. Durley RC, Pharis RP (1973) Interconversion of gibberellin A4 to gibberellins Al and AM by dwarf rice, cultivar Tanginbozu. Planta 109:357-61 CrossRef
    7. Finch-Savage WE, Leubner-Metzger G (2006) Seed dormancy and the control of germination. New Phytol 171:501-23 CrossRef
    8. Huerta L, Forment J, Gadea J, Fagoaga C, Pe?a L, Pérez-amador M, García-martínez JL (2008) Gene expression analysis in Citrus reveals the role of gibberellins on photosynthesis and stress. Plant Cell Environ 31:1620-633 CrossRef
    9. Harberd NP, King KE, Carol P, Cowling RJ, Peng JR, Richards DE (1998) Gibberellin: inhibitor of an inhibitor of - BioEssays 20(12):1001-008 CrossRef
    10. Hedden P, Graebe J (1985) Inhibition of gibberellin biosynthesis by paclobutrazol in cell-free homogenates of / Cucurbita maxima endosperm and / Malus pumila embryos. J Plant Growth Regul 4:111-22 CrossRef
    11. Hedden P, Proebsting WM (1999) Genetic analysis of gibberellin biosynthesis. Plant Physiol 119:365-70 CrossRef
    12. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523-30 CrossRef
    13. Huang J, Tang D, Shen Y, Qin BX, Hong LL, You AQ, Li M, Wang X, Yu HX, Gu MB, Cheng ZK (2010) Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice ( / Oryza sativa L.). J Genet Genomics 37:23-6 CrossRef
    14. Iglesias-Fernández R, Matilla AJ (2010) Genes involved in ethylene and gibberellins metabolism are required for endosperm-limited germination of / Sisymbrium oycinale L. seeds germination in / Sisymbrium oycinale L. seeds. Planta 231:653-64 CrossRef
    15. Kende H, Zeevaart JAD (1997) The five “classical-plant hormones. Plant Cell 9(1):197-210
    16. Kloosterman B, Navarro C, Bijsterbosch G, Lange T, Prat S, Visser RGF, Bachem CWB (2007) StGA2ox1 is induced prior to stolon swelling and controls GA levels during potato tuber development. Plant J 52:362-73 CrossRef
    17. Koshioka M, Douglas TJ, Ernst D, Huber J, Pharis RP (1983) Metabolism of [3H]gibberellin A4 in somatic suspension cultures of anise. Phytochemistry 22:1577-584 CrossRef
    18. Kucera B, Cohn MA, Leubner-Metzger L (2005) Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15:281-07 CrossRef
    19. Lee DJ, Zeevaart JAD (2005) Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in / Nicotiana sylvestris. Plant Physiol 138:243-54 CrossRef
    20. Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JAD, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603-618 CrossRef
    21. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350-82 CrossRef
    22. Lin JZ, Zhou B, Yang YZ, Mei J, Zhao XY, Guo XH, Huang XQ, Tang DY, Liu XM (2009) Piercing and vacuum infiltration of the mature embryo: a simplified method for / Agrobacterium-mediated transformation of indica rice. Plant Cell Rep 28:1065-074 CrossRef
    23. Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321-325 CrossRef
    24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays of tobacco tissue cultures. Physiol Plant 15:473-97 CrossRef
    25. Nykiforuk CL, Johnson-Flanagan AM (1998) Low temperature emergence in crop plants: biochemical and molecular aspects of germination and early seedling growth. J Crop Prod 1:249-73 CrossRef
    26. Norusis MJ (1993) Documentation SPSS for Windows. SPSS, Chicago
    27. Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M (2004) A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice. Plant Mol Biol 55:687-00 CrossRef
    28. Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(suppl):S61–S80
    29. Rodríguez-Gacio MC, Matilla AJ (2009) Seed dormancy and ABA signalling: the breakthrough goes on. Plant Signal Behav 4:1035-048 CrossRef
    30. Rood S, Hedden P (1994) Convergent pathways of gibberellin Al biosynthesis in / Brassica. Plant Growth Regul 15:241-46 CrossRef
    31. Rood SB, Pharis RP, Koshioka M (1983) Reversible conjugation of gibberellins in situ in maize. Plant Physiol 73:340-46 CrossRef
    32. Rood SB, Pearce D, Williams PH, Pharis RP (1989) A gibberellin-deficient / Brassica mutant—rosette. Plant Physio 189:482-87 CrossRef
    33. Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JAD, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151-63 CrossRef
    34. Sakamoto T, Kobayashi M, Ihoh H, Tagiri A, Kayano T, Tanaka H, Iwahori S, Matsuoka M (2001) Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol 125:1508-516 CrossRef
    35. Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642-653 CrossRef
    36. Sayed OH (2003) Chlorophyll fluorescence as a tool in cereal research. Photosynthetica 41:321-30 CrossRef
    37. Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197-23 CrossRef
    38. Takahashi M, Kamiya Y, Takahashi N, Graebe JE (1986) Metabolism of gibberellins in a cell-free system from immature seeds of / Phaseolus vulgaris L. Planta 168:190-99
    39. Talon M, Zeevaart JA (1990) Gibberellins and stem growth as related to photoperiod in / Silene armeria L. Plant Physiol 92:1094-100 CrossRef
    40. Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698-703 CrossRef
    41. Wang H, Caruso LV, Downie AB, Perry SE (2004) The embryo MADS domain protein AGAMOUS-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell 16:1206-219 CrossRef
    42. Yamaguchi S, Kamiya Y, Sun T (2001) Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during / Arabidopsis seed germination. Plant J 28:443-53 CrossRef
    43. Yamaguchi S, Kamiya Y, Nambara E (2007) Regulation of ABA and GA levels during seed development and germination in / Arabidopsis. Blackwell, Oxford
    44. Yamane H, Murofushi N, Osada H, Takahashi N (1977) Metabolism of gibberellins in early immature bean seeds. Phytochemistry 16:831-35 CrossRef
    45. Yang J, Zhang J, Wang Z, Zhu Q, Wang W (2001) Hormonal changes in the grains of rice subjected to water stress during grain filling. Plant Physiol 127:315-23 CrossRef
    46. Zeevaart JA, Gage DA, Talon M (1993) Gibberellin A1 is required for stem elongation in spinach. Proc Natl Acad Sci USA 90:7401-405 CrossRef
    47. Zhao XY, Yu XH, Foo E, Symons GM, Lopez J, Bendehakkalu KT, Xiang J, Weller JL, Liu XM, Reid JB, Lin CT (2007) A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol 145:106-11 CrossRef
  • 作者单位:Bo Zhou (1)
    Dan Peng (1)
    Jianzhong Lin (1)
    Xingqun Huang (1)
    Wusheng Peng (2)
    Reqing He (1)
    Ming Guo (1)
    Dongying Tang (1)
    Xiaoying Zhao (1)
    Xuanming Liu (1)

    1. Bioenergy and Biomaterial Research Center, Collage of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, Hunan, China
    2. Academy of Seed Industry of Hunan Yahua, Changsha, 410001, Hunan, China
文摘
Gibberellins (GAs) are endogenous hormones that play an important role in regulating plant stature by increasing cell division and promoting seed germination. The GA2-oxidase gene from Arabidopsis thaliana (AtGA2ox8) was introduced into Brassica napus L. by Agrobacterium-mediated floral-dip transformation with the aim of decreasing the amount of bioactive GA and hence reduced the plant height. As anticipated, the transgenic plant exhibited dwarf phenotype. Importantly, compared with the wild type, the transgenic plants had delayed the seed germination, increased the chlorophyll content (28.7-6.3%) and photosynthesis capacity (14.3-8.7%) in a single leaf. At the same time, the photosynthesis capacity of the whole plants was significantly enhanced (35.7-8.6%) due to the extra leaves and branches.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700