用户名: 密码: 验证码:
Comparative analysis of the alveolar macrophage proteome in ALI/ARDS patients between the exudative phase and recovery phase
详细信息    查看全文
  • 作者:Haiyun Dong (1)
    Jinxiu Li (1)
    Youdi Lv (1)
    Yanyan Zhou (1)
    Guyi Wang (1)
    Shuang Hu (2) (3)
    Xiaoyu He (2) (3)
    Ping Yang (2) (3)
    Zhiguang Zhou (4)
    Xudong Xiang (1)
    Cong-Yi Wang (2) (3)
  • 关键词:ALI/ARDS ; Alveolar macrophages ; Biomarker ; 2D PAGE ; MALDI ; TOF ; MS
  • 刊名:BMC Immunology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:495KB
  • 参考文献:1. Phua J, Stewart TE, Ferguson ND: Acute respiratory distress syndrome 40 years later: time to revisit its definition. / Crit Care Med 2008, 36:2912鈥?921. CrossRef
    2. Phua J, Badia JR, Adhikari NK, Friedrich JO, Fowler RA, Singh JM, Scales DC, Stather DR, Li A, Jones A, Gattas DJ, Hallett D, Tomlinson G, Stewart TE, Ferguson ND: Has mortality from acute respiratory distress syndrome decreased over time?: A systematic review. / Am J Respir Crit Care Med 2009, 179:220鈥?27. CrossRef
    3. Rubenfeld GD, Caldwell E, Peabody E, Weaver J, Martin DP, Neff M, Stern EJ, Hudson LD: Incidence and outcomes of acute lung injury. / N Engl J Med 2005, 353:1685鈥?693. CrossRef
    4. Fudala R, Krupa A, Stankowska D, Allen TC, Kurdowska AK: Does activation of the FcgammaRIIa play a role in the pathogenesis of the acute lung injury/acute respiratory distress syndrome? / Clin Sci (Lond) 2010, 118:519鈥?26. CrossRef
    5. Mokart D, Guery BP, Bouabdallah R, Martin C, Blache JL, Arnoulet C, Mege JL: Deactivation of alveolar macrophages in septic neutropenic ARDS. / Chest 2003, 124:644鈥?52. CrossRef
    6. Kobayashi A, Hashimoto S, Kooguchi K, Kitamura Y, Onodera H, Urata Y, Ashihara T: Expression of inducible nitric oxide synthase and inflammatory cytokines in alveolar macrophages of ARDS following sepsis. / Chest 1998, 113:1632鈥?639. CrossRef
    7. Kubota Y, Iwasaki Y, Harada H, Yokomura I, Ueda M, Hashimoto S, Nakagawa M: Role of alveolar macrophages in Candida-induced acute lung injury. / Clin Diagn Lab Immunol 2001, 8:1258鈥?262.
    8. Trapnell BC, Whitsett JA: Gm-CSF regulates pulmonary surfactant homeostasis and alveolar macrophage-mediated innate host defense. / Annu Rev Physiol 2002, 64:775鈥?02. CrossRef
    9. Haslett C: Granulocyte apoptosis and its role in the resolution and control of lung inflammation. / Am J Respir Crit Care Med 1999, 160:S5-S11. CrossRef
    10. Schagat TL, Wofford JA, Wright JR: Surfactant protein A enhances alveolar macrophage phagocytosis of apoptotic neutrophils. / J Immunol 2001, 166:2727鈥?733.
    11. Rao X, Zhong J, Zhang S, Zhang Y, Yu Q, Yang P, Wang MH, Fulton DJ, Shi H, Dong Z, Wang D, Wang CY: Loss of methyl-CpG-binding domain protein 2 enhances endothelial angiogenesis and protects mice against hind-limb ischemic injury. / Circulation 2011, 123:2964鈥?974. CrossRef
    12. Yang P, Li M, Guo D, Gong F, Adam BL, Atkinson MA, Wang CY: Comparative analysis of the islet proteome between NOD/Lt and ALR/Lt mice. / Ann N Y Acad Sci 2008, 1150:68鈥?1. CrossRef
    13. Zhang S, Lv JW, Yang P, Yu Q, Pang J, Wang Z, Guo H, Liu S, Hu J, Li J, Leng J, Huang Y, Ye Z, Wang CY: Loss of dicer exacerbates cyclophosphamide-induced bladder overactivity by enhancing purinergic signaling. / Am J Pathol 2012, 181:937鈥?46. CrossRef
    14. Serveau-Avesque C, Martino MF, Herve-Grepinet V, Hazouard E, Gauthier F, Diot E, Lalmanach G: Active cathepsins B, H, K, L and S in human inflammatory bronchoalveolar lavage fluids. / Biol Cell 2006, 98:15鈥?2. CrossRef
    15. Roghanian A, Sallenave JM: Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). / J Aerosol Med Pulm Drug Deliv 2008, 21:125鈥?44. CrossRef
    16. Nouh MA, Mohamed MM, El-Shinawi M, Shaalan MA, Cavallo-Medved D, Khaled HM, Sloane BF: Cathepsin B: a potential prognostic marker for inflammatory breast cancer. / J Transl Med 2011, 9:1. CrossRef
    17. Wheeler DS, Wong HR: Heat shock response and acute lung injury. / Free Radic Biol Med 2007, 42:1鈥?4. CrossRef
    18. Liu L, Zhang XJ, Jiang SR, Ding ZN, Ding GX, Huang J, Cheng YL: Heat shock protein 27 regulates oxidative stress-induced apoptosis in cardiomyocytes: mechanisms via reactive oxygen species generation and Akt activation. / Chin Med J (Engl) 2007, 120:2271鈥?277.
    19. Bukau B, Weissman J, Horwich A: Molecular chaperones and protein quality control. / Cell 2006, 125:443鈥?51. CrossRef
    20. Villar J, Ribeiro SP, Mullen JB, Kuliszewski M, Post M, Slutsky AS: Induction of the heat shock response reduces mortality rate and organ damage in a sepsis-induced acute lung injury model. / Crit Care Med 1994, 22:914鈥?21. CrossRef
    21. Harris HE, Raucci A: Alarmin(g) news about danger: workshop on innate danger signals and HMGB1. / EMBO Rep 2006, 7:774鈥?78.
    22. Zhang S, Zhong J, Yang P, Gong F, Wang CY: HMGB1, an innate alarmin, in the pathogenesis of type 1 diabetes. / Int J Clin Exp Pathol 2009, 3:24鈥?8.
    23. Han J, Zhong J, Wei W, Wang Y, Huang Y, Yang P, Purohit S, Dong Z, Wang MH, She JX, Gong F, Stern DM, Wang CY: Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice. / Diabetes 2008, 57:2118鈥?127. CrossRef
    24. Ohmoto K, Okuma M, Yamamoto T, Kijima H, Sekioka T, Kitagawa K, Yamamoto S, Tanaka K, Kawabata K, Sakata A, Imawaka H, Nakai H, Toda M: Design and synthesis of new orally active inhibitors of human neutrophil elastase. / Bioorg Med Chem 2001, 9:1307鈥?323. CrossRef
    25. Rees DD, Rogers RA, Cooley J, Mandle RJ, Kenney DM, Remold-O'Donnell E: Recombinant human Monocyte/Neutrophil elastase inhibitor protects rat lungs against injury from cystic fibrosis airway secretions. / Am J Respir Cell Mol Biol 1999, 20:69鈥?8. CrossRef
    26. Fujino N, Kubo H, Suzuki T, He M, Yamada M, Takahashi T, Ota C, Yamaya M: Administration of a specific inhibitor of neutrophil elastase attenuates pulmonary fibrosis after acute lung injury in mice. / Exp Lung Res 2012, 38:28鈥?6. CrossRef
    27. Moroz OV, Antson AA, Murshudov GN, Maitland NJ, Dodson GG, Wilson KS, Skibshoj I, Lukanidin EM, Bronstein IB: The three-dimensional structure of human S100A12. / Acta Crystallogr D Biol Crystallogr 2001, 57:20鈥?9. CrossRef
    28. de Torre C, Ying SX, Munson PJ, Meduri GU, Suffredini AF: Proteomic analysis of inflammatory biomarkers in bronchoalveolar lavage. / Proteomics 2006, 6:3949鈥?957. CrossRef
  • 作者单位:Haiyun Dong (1)
    Jinxiu Li (1)
    Youdi Lv (1)
    Yanyan Zhou (1)
    Guyi Wang (1)
    Shuang Hu (2) (3)
    Xiaoyu He (2) (3)
    Ping Yang (2) (3)
    Zhiguang Zhou (4)
    Xudong Xiang (1)
    Cong-Yi Wang (2) (3)

    1. Intensive Care Unit, Diabetes Center, Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
    2. The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave., Wuhan, 430030, China
    3. Key Laboratory of Organ Transplantation, Ministry of Education, Ministry of Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
    4. Diabetes Center, Second Xiangya Hospital, Central South University, Changsha, China
  • ISSN:1471-2172
文摘
Background Despite decades of extensive studies, the morbidity and mortality for acute lung injury/acute respiratory distress syndrome (ALI/ARDS) remained high. Particularly, biomarkers essential for its early diagnosis and prognosis are lacking. Methods Recent studies suggest that alveolar macrophages (AMs) at the exudative phase of ALI/ARDS initiate, amplify and perpetuate inflammatory responses, while they resolve inflammation in the recovery phase to prevent further tissue injury and perpetuated inflammation in the lung. Therefore, proteins relevant to this functional switch could be valuable biomarkers for ALI/ARDS diagnosis and prognosis. We thus conducted comparative analysis of the AM proteome to assess its dynamic proteomic changes during ALI/ARDS progression and recovery. Results 135 proteins were characterized to be differentially expressed between AMs at the exudative and recovery phase. MALDI-TOF-MS and peptide mass fingerprint (PMF) analysis characterized 27 informative proteins, in which 17 proteins were found with a marked increase at the recovery phase, while the rest of 10 proteins were manifested by the significantly higher levels of expression at the exudative phase. Conclusions Given the role of above identified proteins played in the regulation of inflammatory responses, cell skeleton organization, oxidative stress, apoptosis and metabolism, they have the potential to serve as biomarkers for early diagnosis and prognosis in the setting of patients with ALI/ARDS.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700