用户名: 密码: 验证码:
Potential roles of microRNAs in regulating long intergenic noncoding RNAs
详细信息    查看全文
  • 作者:Liran Juan (1) (5)
    Guohua Wang (1)
    Milan Radovich (2)
    Bryan P Schneider (3)
    Susan E Clare (2)
    Yadong Wang (1)
    Yunlong Liu (4) (5)
  • 刊名:BMC Medical Genomics
  • 出版年:2013
  • 出版时间:January 2013
  • 年:2013
  • 卷:6
  • 期:1-supp
  • 全文大小:479KB
  • 参考文献:1. The ENCODE (ENCyclopedia Of DNA Elements) Project / Science 2004,306(5696):636鈥?0.
    2. Guttman M, / et al.: Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. / Nature 2009,458(7235):223鈥?. CrossRef
    3. Khalil AM, / et al.: Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. / Proc Natl Acad Sci USA 2009,106(28):11667鈥?2. CrossRef
    4. Huarte M, / et al.: A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. / Cell 2010,142(3):409鈥?9. CrossRef
    5. Chen Y, Dhupelia A, Schoenherr CJ: The Igf2/H19 imprinting control region exhibits sequence-specific and cell-type-dependent DNA methylation-mediated repression. / Nucleic Acids Res 2009,37(3):793鈥?03. CrossRef
    6. Jia H, / et al.: Genome-wide computational identification and manual annotation of human long noncoding RNA genes. / RNA 2010,16(8):1478鈥?7. CrossRef
    7. Alexander RP, / et al.: Annotating non-coding regions of the genome. / Nat Rev Genet 2010,11(8):559鈥?1. CrossRef
    8. Parker BJ, / et al.: New families of human regulatory RNA structures identified by comparative analysis of vertebrate genomes. / Genome Res 2011,21(11):1929鈥?3. CrossRef
    9. Barsotti AM, Prives C: Noncoding RNAs: the missing "linc" in p53-mediated repression. / Cell 2010,142(3):358鈥?0. CrossRef
    10. Gupta RA, / et al.: Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. / Nature 2010,464(7291):1071鈥?. CrossRef
    11. Tsai MC, / et al.: Long noncoding RNA as modular scaffold of histone modification complexes. / Science 2010,329(5992):689鈥?3. CrossRef
    12. Rinn JL, / et al.: Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. / Cell 2007,129(7):1311鈥?3. CrossRef
    13. Amaral PP, Mattick JS: Noncoding RNA in development. / Mamm Genome 2008,19(7鈥?):454鈥?2. CrossRef
    14. Clark MB, / et al.: Genome-wide analysis of long noncoding RNA stability. / Genome Res 2012,22(5):885鈥?8. CrossRef
    15. Nagano T, Fraser P: No-nonsense functions for long noncoding RNAs. / Cell 2011,145(2):178鈥?1. CrossRef
    16. Guttman M, / et al.: lincRNAs act in the circuitry controlling pluripotency and differentiation. / Nature 2011,477(7364):295鈥?00. CrossRef
    17. Zhao J, / et al.: Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. / Science 2008,322(5902):750鈥?. CrossRef
    18. Nagano T, / et al.: The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. / Science 2008,322(5908):1717鈥?0. CrossRef
    19. Cabianca DS, / et al.: A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. / Cell 2012,149(4):819鈥?1. CrossRef
    20. Tripathi V, / et al.: The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. / Mol Cell 2010,39(6):925鈥?8. CrossRef
    21. Novikova IV, Hennelly SP, Sanbonmatsu KY: Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. / Nucleic Acids Res 2012,40(11):5034鈥?1. CrossRef
    22. Huarte M, Rinn JL: Large non-coding RNAs: missing links in cancer? / Hum Mol Genet 2010,19(R2):R152鈥?1. CrossRef
    23. Moran VA, Perera RJ, Khalil AM: Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. / Nucleic Acids Res 2012,40(14):6391鈥?00. CrossRef
    24. Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. / Cell 2004,116(2):281鈥?7. CrossRef
    25. O'Connell RM, / et al.: Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. / J Exp Med 2008,205(3):585鈥?4. CrossRef
    26. Griffiths-Jones S: The microRNA Registry. / Nucleic Acids Res 2004,32(Database issue):D109鈥?1. CrossRef
    27. Brennecke J, / et al.: bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. / Cell 2003,113(1):25鈥?6. CrossRef
    28. Krichevsky AM, / et al.: A microRNA array reveals extensive regulation of microRNAs during brain development. / RNA 2003,9(10):1274鈥?1. CrossRef
    29. Xie X, / et al.: Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals. / Nature 2005,434(7031):338鈥?5. CrossRef
    30. Wienholds E, / et al.: MicroRNA expression in zebrafish embryonic development. / Science 2005,309(5732):310鈥?. CrossRef
    31. Hansen TB, / et al.: miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. / EMBO J 2011,30(21):4414鈥?2. CrossRef
    32. Braconi C, / et al.: microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. / Oncogene 2011,30(47):4750鈥?. CrossRef
    33. Guo H, / et al.: Mammalian microRNAs predominantly act to decrease target mRNA levels. / Nature 2010,466(7308):835鈥?0. CrossRef
    34. Chi SW, / et al.: Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. / Nature 2009,460(7254):479鈥?6.
    35. Hendrickson DG, / et al.: Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. / PLoS One 2008,3(5):e2126. CrossRef
    36. Harrow J, / et al.: GENCODE: producing a reference annotation for ENCODE. / Genome Biol 2006,7(Suppl 1):S4 1鈥?. CrossRef
    37. Bu D, / et al.: NONCODE v3.0: integrative annotation of long noncoding RNAs. / Nucleic Acids Res 2012,40(Database issue):D210鈥?. CrossRef
    38. Jeggari A, Marks DS, Larsson E: miRcode: a map of putative microRNA target sites in the long non-coding transcriptome. / Bioinformatics 2012,28(15):2062鈥?. CrossRef
    39. Prensner JR, / et al.: Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. / Nat Biotechnol 2011,29(8):742鈥?. CrossRef
    40. Trapnell C, Pachter L, Salzberg SL: TopHat: discovering splice junctions with RNA-Seq. / Bioinformatics 2009,25(9):1105鈥?1. CrossRef
    41. Trapnell C, / et al.: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. / Nat Biotechnol 2010,28(5):511鈥?. CrossRef
    42. Guttman M, / et al.: Ab initio reconstruction of cell type-specific transcriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. / Nat Biotechnol 2010,28(5):503鈥?0. CrossRef
    43. Homer N, Merriman B, Nelson SF: BFAST: an alignment tool for large scale genome resequencing. / PLoS One 2009,4(11):e7767. CrossRef
    44. Kent WJ, / et al.: The human genome browser at UCSC. / Genome Res 2002,12(6):996鈥?006.
    45. Wang G, / et al.: RNA polymerase II binding patterns reveal genomic regions involved in microRNA gene regulation. / PLoS One 2010,5(11):e13798. CrossRef
    46. Hiller D, / et al.: Identifiability of isoform deconvolution from junction arrays and RNA-Seq. / Bioinformatics 2009,25(23):3056鈥?. CrossRef
    47. Jiang H, Wong WH: Statistical inferences for isoform expression in RNA-Seq. / Bioinformatics 2009,25(8):1026鈥?2. CrossRef
    48. Li B, / et al.: RNA-Seq gene expression estimation with read mapping uncertainty. / Bioinformatics 2010,26(4):493鈥?00. CrossRef
    49. Lin MF, / et al.: Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes. / Genome Res 2007,17(12):1823鈥?6. CrossRef
    50. Lin MF, / et al.: Performance and scalability of discriminative metrics for comparative gene identification in 12 Drosophila genomes. / PLoS Comput Biol 2008,4(4):e1000067. CrossRef
    51. Friedman RC, / et al.: Most mammalian mRNAs are conserved targets of microRNAs. / Genome Res 2009,19(1):92鈥?05. CrossRef
    52. Kertesz M, / et al.: The role of site accessibility in microRNA target recognition. / Nat Genet 2007,39(10):1278鈥?4. CrossRef
    53. Tsai MC, Spitale RC, Chang HY: Long intergenic noncoding RNAs: new links in cancer progression. / Cancer Res 2011,71(1):3鈥?. CrossRef
    54. Jiang Q, / et al.: miR2Disease: a manually curated database for microRNA deregulation in human disease. / Nucleic Acids Res 2009,37(Database issue):D98鈥?04. CrossRef
    55. Papadopoulos GL, / et al.: The database of experimentally supported targets: a functional update of TarBase. / Nucleic Acids Res 2009,37(Database issue):D155鈥?. CrossRef
    56. Medina R, / et al.: MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. / Cancer Res 2008,68(8):2773鈥?0. CrossRef
    57. Selbach M, / et al.: Widespread changes in protein synthesis induced by microRNAs. / Nature 2008,455(7209):58鈥?3. CrossRef
    58. Sengupta S, / et al.: MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. / Proc Natl Acad Sci USA 2008,105(15):5874鈥?. CrossRef
    59. Bolisetty MT, / et al.: Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival. / J Virol 2009,83(23):12009鈥?7. CrossRef
    60. Inomata M, / et al.: MicroRNA-17鈥?2 down-regulates expression of distinct targets in different B-cell lymphoma subtypes. / Blood 2009,113(2):396鈥?02. CrossRef
    61. Fu Y, / et al.: SOLiD鈩?Sequencing and 2-Base Encoding. / The Biology of Genomes Meeting 2008.
    62. Garber M, / et al.: Identifying novel constrained elements by exploiting biased substitution patterns. / Bioinformatics 2009,25(12):i54鈥?2. CrossRef
    63. Clamp M, / et al.: Distinguishing protein-coding and noncoding genes in the human genome. / Proc Natl Acad Sci USA 2007,104(49):19428鈥?3. CrossRef
    64. Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. / Nucleic Acids Res 2011,39(Database issue):D152鈥?. CrossRef
    65. Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. / Journal of the Royal Statistical Society. Series B (Methodological) 1995, 289鈥?00.
  • 作者单位:Liran Juan (1) (5)
    Guohua Wang (1)
    Milan Radovich (2)
    Bryan P Schneider (3)
    Susan E Clare (2)
    Yadong Wang (1)
    Yunlong Liu (4) (5)

    1. Center for Biomedical Informatics, Harbin Institute of Technology School of Computer Science and Technology, Harbin, Heilongjiang, 150001, China
    5. Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
    2. Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
    3. Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
    4. Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
  • ISSN:1755-8794
文摘
Background Over 10,000 long intergenic non-coding RNAs (lincRNAs) have been identified in the human genome. Some have been well characterized and known to participate in various stages of gene regulation. In the post-transcriptional process, another class of well-known small non-coding RNA, or microRNA (miRNA), is very active in inhibiting mRNA. Though similar features between mRNA and lincRNA have been revealed in several recent studies, and a few isolated miRNA-lincRNA relationships have been observed. Despite these advances, the comprehensive miRNA regulation pattern of lincRNA has not been clarified. Methods In this study, we investigated the possible interaction between the two classes of non-coding RNAs. Instead of using the existing long non-coding database, we employed an ab initio method to annotate lincRNAs expressed in a group of normal breast tissues and breast tumors. Results Approximately 90 lincRNAs show strong reverse expression correlation with miRNAs, which have at least one predicted target site presented. These target sites are statistically more conserved than their neighboring genetic regions and other predicted target sites. Several miRNAs that target to these lincRNAs are known to play an essential role in breast cancer. Conclusion Similar to inhibiting mRNAs, miRNAs show potential in promoting the degeneration of lincRNAs. Breast-cancer-related miRNAs may influence their target lincRNAs resulting in differential expression in normal and malignant breast tissues. This implies the miRNA regulation of lincRNAs may be involved in the regulatory process in tumor cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700