用户名: 密码: 验证码:
Phosphorus diffusion gettering process of multicrystalline silicon using a sacrificial porous silicon layer
详细信息    查看全文
  • 作者:Derbali Lotfi (1)
    Ezzaouia Hatem (1)
  • 关键词:Multicrystalline silicon ; Porous silicon ; Defect density ; Grain boundaries ; Gettering ; WTC ; 120 lifetime tester
  • 刊名:Nanoscale Research Letters
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:7
  • 期:1
  • 全文大小:298KB
  • 参考文献:1. Bakos GC: Distributed power generation: a case study of small scale PV power plant in Greece. / Appl Energy 2009, 86:1757-766. CrossRef
    2. Yamaguchi M, Ohshita Y, Arafune K, Sai H, Tachibana M: Present status and future of crystalline silicon solar cells in Japan. / Solar Energy 2006, 80:104-10. CrossRef
    3. Krotkus A, Grigoras K, Pacebutas V, Barsony I, Vazsonyi E, Fried M, Szlufcik J, Nijs J, Lévy-Clément C: Efficiency improvement by porous silicon coating of multicristalline silicon solar cells. / Sol Energy Mater Sol Cells 1997, 45:267-73. CrossRef
    4. Yae S, Kobayashi T, Kawagishi T, Fukumuro N, Matsuda H: Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching. / Solar Energy 2006, 80:701-06. CrossRef
    5. Bastide S, Albu-Yaron A, Strehlke S, Lévy-Clément C: Formation and characterization of porous silicon layers for application in multicrystalline silicon solar cells. / Sol Energy Mater Sol Cells 1999, 57:393. CrossRef
    6. Ben Rabha M, Hajjaji A, Bessais B: Improvement of multicrystalline silicon solar cell performance via chemical vapor etching method-based porous silicon nanostructures. / Solar Energy 2012, 86:1411-415. CrossRef
    7. Macdonald DH, Cuevas A, Kerr MJ, Samundsett C, Ruby D, Winderbaum S, Leo A: Texturing industrial multicrystalline silicon solar cells. / Solar Energy 2004, 76:277-83. CrossRef
    8. Richards BS, Rowlands SF, Ueranatasun A, Cotter JE, Honsberg CB: Potential cost reduction of buried-contact solar cells, through the use of titanium dioxide thin films. / Solar Energy 2004, 76:269-76. CrossRef
    9. Ben Rabha M, Bessais B: Enhancement of photovoltaic properties of multicrystalline silicon solar cells by combination of buried metallic contacts and thin porous silicon. / Solar Energy 2010, 84:486-91. CrossRef
    10. Derbali L, Ezzaouia H: Vanadium-based antireflection coated on multicrystalline silicon acting as a passivating layer. / Solar Energy 2012, 86:1504-510. CrossRef
    11. Goetzberger A, Shockley W: Metal precipitates in Silicon p-n junctions. / J Appl Phy 1821, 1960:31.
    12. Derbali L, Dimassi W, Ezzaouia H: Improvement of the minority carrier mobility in low-quality multicrystalline silicon using a porous silicon-based gettering under an O 2 atmosphere. / Energy Procedia 2011, 10:243-48. CrossRef
    13. Ponce-Alcantara S, Del Canizo C, Luque A: Adaptation of monocrystalline solar cell process to multicrystalline materials. / Sol Energy Mater Sol Cells 2005, 87:411. CrossRef
    14. Khedher N, Hajji M, Hassen M, Ben Jaballah A, Ouertani B, Ezzaouia H, Bessais B, Selmi A, Bennaceur R: Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. / Sol Energy Mater Sol Cells 2005, 87:605. CrossRef
    15. Bilyalov R, Stalmans L, Beaucarne G, Loo R, Caymax M, Poortmans J, Nijs J: Porous silicon as an intermediate layer for thin-film solar cell. / Sol Energy Mater Sol Cells 2001, 65:477. CrossRef
    16. Bilyalov RR, Ludermann R, Wettling W, Stalmans L, Poortmans J, Nijs J, Schirone L, Sotgiu G, Strehlke S, Lévy-Clément C: Multicrystalline silicon solar cells with porous silicon emitter. / Sol Energy Mater Sol Cells 2000, 60:391. CrossRef
    17. Kang JS, Schroeder DK: Gettering in silicon. / J Appl Phys 1989, 65:2974. CrossRef
    18. Schr?ter W, Kuhnaplef : Model describing phosphorus diffusing gettering of transition elements in silicon. / Appl Phy Lett 1990, 56:2207. CrossRef
    19. Szlufcik J, Duerinckx F, Horzel J, Van Kerschaver E, Einhaus R, De Clerca K, Dekkers H, Nijs J: Advanced concepts of industrial technologies of crystalline silicon solar cells. / Opto-Electron Rev 2000, 8:299.
    20. Noêl S, Lautenschlqger H, Muller JC: Highest efficiency rapid thermal processed multicrystalline silicon solar cells. / Prog Photovolt 2001, 9:41. CrossRef
    21. Khedher N, Hajji M, Boua?cha M, Boujmil MF, Ezzaouia H, Bessais B, Bennaceur R: Improvement of transport parameters in solar grade monocrystalline silicon by application of a sacrificial porous silicon layer. / Solid State Commun 2002, 123:7. CrossRef
    22. Sopori B: Silicon solar-cell processing for minimizing the influence of impurities and defects. / J Electron Mater 2002, 31:972-80. CrossRef
    23. Cuevas A, Macdonald D: Measuring and interpreting the lifetime of silicon wafers. / Solar Energy 2004, 76:255-62. CrossRef
    24. Kampwerth H, Rein S, Glunz SW: Proceedings of the Third World Conference on Photovoltaic Energy Conversion: May 18 2003. In / Pure experimental determination of surface recombination properties with high reliability. Osaka. New York: IEEE Proceedings; 2003:1073-076.
    25. Nouri H, Bouaicha M, Bessais B: Effect of porous silicon on the performances of silicon solar cells during the porous silicon-based gettering procedure. / Solar Energy Materials & Solar Cells 2009, 93:1823-826. CrossRef
    26. M?ller HJ: / Semiconductors for Solar Cells. Boston, MA: Artech House, Inc; 1993:187.
    27. Pollok AG, Deline VR, Furman BK: / Grain Boundaries in Semi-conductors. Amsterdam: Elsevier Science; 1982:71.
    28. Greuter F, Blatter G: Electrical properties of grain boundaries in polycrystalline compound semiconductors. / Semicond Sci Technol 1990, 5:111-37. CrossRef
    29. Priyanka , Lal M, Singh SN: A new method of determination of series and shunt resistances of silicon solar cells. / Sol Energy Mater Sol Cells 2007, 91:137. CrossRef
    30. Green MA: Crystalline and thin-film silicon solar cells: state of the art and future potential. / Solar Energy 2003, 74:181. CrossRef
  • 作者单位:Derbali Lotfi (1)
    Ezzaouia Hatem (1)

    1. Photovolta?c laboratory, Research and Technology Center of Energy, Technop?le de Borj-Cédria. BP 95, Hammam-Lif, 2050, Tunisia
  • ISSN:1556-276X
文摘
The aims of this work are to getter undesirable impurities from low-cost multicrystalline silicon (mc-Si) wafers and then enhance their electronic properties. We used an efficient process which consists of applying phosphorus diffusion into a sacrificial porous silicon (PS) layer in which the gettered impurities have been trapped after the heat treatment. As we have expected, after removing the phosphorus-rich PS layer, the electrical properties of the mc-Si wafers were significantly improved. The PS layers, realized on both sides of the mc-Si substrates, were formed by the stain-etching technique. The phosphorus treatment was achieved using a liquid POCl3-based source on both sides of the mc-Si wafers. The realized phosphorus/PS/Si/PS/phosphorus structures were annealed at a temperature ranging between 700°C and 950°C under a controlled O2 atmosphere, which allows phosphorus to diffuse throughout the PS layers and to getter eventual metal impurities towards the phosphorus-doped PS layer. The effect of this gettering procedure was investigated by means of internal quantum efficiency and the dark current–voltage (I-V) characteristics. The minority carrier lifetime measurements were made using a WTC-120 photoconductance lifetime tester. The serial resistance and the shunt resistance carried out from the dark I-V curves confirm this gettering-related solar cell improvement. It has been shown that the photovoltaic parameters of the gettered silicon solar cells were improved with regard to the ungettered one, which proves the beneficial effect of this gettering process on the conversion efficiency of the multicrystalline silicon solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700