用户名: 密码: 验证码:
PEGylated Single-Walled Carbon Nanotubes as Nanocarriers for Cyclosporin A Delivery
详细信息    查看全文
  • 作者:Naghmeh Hadidi (1)
    Farzad Kobarfard (2)
    Nastaran Nafissi-Varcheh (3)
    Reza Aboofazeli (1)
  • 关键词:carbon nanotubes ; cyclosporin A ; drug loading ; elemental analysis ; functionalization
  • 刊名:AAPS PharmSciTech
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:14
  • 期:2
  • 页码:593-600
  • 全文大小:287KB
  • 参考文献:1. Tang MF, Lei L, Guo SR, Huang WL. Recent progress in nanotechnology for cancer therapy. Chin J Cancer. 2010;29(9):775-0. CrossRef
    2. Mielcarek J, Skupin P. Functionalization of carbon nanotubes for multimodal drug delivery. Przegl Lek. 2011;68(3):167-0.
    3. Ilbasmis-Tamer S, Degim IT. A feasible way to use carbon nanotubes to deliver drug molecules: transdermal application. Expert Opin Drug Deliv. 2012;9(8):991-. CrossRef
    4. Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta Biomembr. 2006;1758(3):404-2. CrossRef
    5. Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ. Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumor. Biomaterials. 2012;33:1689-8. CrossRef
    6. Gomez-Gualdrón DA, Burgos JC, Yu J, Balbuena PB. Carbon nanotubes: engineering biomedical applications. Prog Mol Biol Transl Sci. 2011;104:175-45. CrossRef
    7. Foldvari M. Formulating nanomedicines: focus on carbon nanotubes as novel nanoexcipients. Key Eng Mater. 2010;441:53-4. CrossRef
    8. Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed Nanotechnol Biol Med. 2008;4(3):183-00. CrossRef
    9. Zhang Y, Bai Y, Yan B. Functionalized carbon nanotubes for potential biomedical application. Drug Deliv Today. 2010;15(11-2):428-5. CrossRef
    10. Endo M, Strano MS, Ajayan PM. Potential applications of carbon nanotubes. In: Jurio A, Dresselhaus G, Dresselhaus MS, editors. Carbon nanotubes advanced topics in the synthesis, structure, properties and applications. Berlin: Springer; 2008. p. 13-2. CrossRef
    11. Liang F, Chen B. A review on biomedical applications of single-walled carbon nanotubes. Curr Med Chem. 2010;17:10-4. CrossRef
    12. Andrews RJ. Nanotechnology and drug delivery: getting there is only half of the challenge! CNS Neurol Disord Drug Targets. 2012;11(1):96-. CrossRef
    13. Boncel S, Müller KH, Skepper JN, Walczak KZ, Koziol KK. Tunable chemistry and morphology of multi-wall carbon nanotubes as a route to non-toxic, theranostic systems. Biomaterials. 2011;32(30):7677-6. CrossRef
    14. Bonner JC. Carbon nanotubes as delivery systems for respiratory disease: do the dangers outweigh the potential benefits? Expert Rev Respir Med. 2011;5(6):779-7. CrossRef
    15. Bottini M, Rosato N, Bottini N. PEG-modified carbon nanotubes in biomedicine: current status and challenges ahead. Biomacromolecules. 2011;12(10):3381-3. CrossRef
    16. Chen C, Xie XX, Zhou Q, Zhang FY, Wang QL, Liu YQ, / et al. EGF-functionalized single-walled carbon nanotubes for targeting delivery of etoposide. Nanotechnology. 2012;23(4):045104. CrossRef
    17. Coyuco JC, Liu Y, Tan BJ, Chiu GN. Functionalized carbon nanomaterials: exploring the interactions with Caco-2 cells for potential oral drug delivery. Int J Nanomed. 2011;6:2253-3.
    18. Fernandez-Fernandez A, Manchanda R, McGoron AJ. Theranostic applications of nanomaterials in cancer: drug delivery, image-guided therapy, and multifunctional platforms. Appl Biochem Biotechnol. 2011;165(7-):1628-1. CrossRef
    19. Gulati N, Gupta H. Two faces of carbon nanotube: toxicities and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst. 2012;29(1):65-8. CrossRef
    20. Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, / et al. Targeted therapy of SMMC-7721 liver cancer / in vitro and / in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci. 2012;365(1):143-. CrossRef
    21. Karmakar A, Lancu C, Bartos DM, Mahmood MW, Ghosh A, Xu Y, / et al. Raman spectroscopy as a detection and analysis tool for / in vitro specific targeting of pancreatic cancer cells by EGF-conjugated, single-walled carbon nanotubes. J Appl Toxicol. 2012;32(5):365-5. CrossRef
    22. Lay CL, Liu J, Liu Y. Functionalized carbon nanotubes for anticancer drug delivery. Expert Rev Med Devices. 2011;8(5):561-. CrossRef
    23. Liu H, Hui X, Wang Y, He Z, Li S. Effect of intratumoral injection on the biodistribution and therapeutic potential of novel cremophor EL-modified single-walled nanotube loading doxorubicin. Drug Dev Ind Pharm. 2012;38(9):1031-. CrossRef
    24. Lu YJ, Wei KC, Ma CC, Yang SY, Chen JP. Dual targeted delivery of doxorubicin to cancer cells using folate-conjugated magnetic multi-walled carbon nanotubes. Colloids Surf B Biointerfaces. 2012;89:1-. CrossRef
    25. Luo X, Matrang C, Tan S, Alba N, Cui XT. Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials. 2013;2(26):6316-3.
    26. Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed. 2011;6:2963-9.
    27. Terzyk AP, Pacholczyk A, Wi?niewski M, Gauden PA. Enhanced adsorption of paracetamol on closed carbon nanotubes by formation of nanoaggregates: carbon nanotubes as potential materials in hot-melt drug deposition-experiment and simulation. J Colloid Interface Sci. 2012;376(1):209-6. CrossRef
    28. Wang Y, Xu H, Liu H, Wang Y, Sun J, He Z. Efficacy and biodistribution of tocopheryl polyethylene glycol succinate non-covalent functionalized single walled nanotubes loading doxorubicin in sarcoma bearing mouse model. J Biomed Nanotechnol. 2012;8(3):450-. CrossRef
    29. Wang Y, Yang S-T, Wang Y, Liu Y, Wang H. Adsorption and desorption of doxorubicin on oxidized carbon nanotubes. Colloids Surf B: Biointerfaces. 2012;97:62-. CrossRef
    30. Prakash S, Malhotra M, Shao W, Tomaro-Duchesneau C, Abbasi S. Polymeric nanohybrids and functionalized carbon nanotubes as drug delivery carriers for cancer therapy. Adv Drug Deliv Rev. 2011;63(14-5):1340-1. CrossRef
    31. Liu Z, Tabakman S, Welsher K, Dai H. Carbon nanotubes in biology and medicine: / in vitro and / in vivo detection, imaging and drug delivery. Nano Res. 2009;2(2):85-20. CrossRef
    32. Pastorin G. Crucial functionalizations of carbon nanotubes for improved drug delivery: a valuable option? Pharm Res. 2009;26(4):746-9. CrossRef
    33. Bhirde AA, Patel V, Gavard J, Zhang G, Sousa AA, Masedunskas A, / et al. Targeted killing of cancer cells / in vivo and / in vitro with EGF-directed carbon nanotube-based drug delivery. J Am Chem Soc Nano. 2009;3(2):307-6.
    34. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S, Luangsivilay J, / et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol. 2007;2(2):108-3. CrossRef
    35. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, / et al. Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells. Nano Lett. 2006;6(7):1522-. CrossRef
    36. Sayes CM, Liang F, Hudson JL, Mendez J, Guo WH, Beach JM, / et al. Functionalization density dependence of single-walled carbon nanotubes cytotoxicity / in vitro. Toxicol Lett. 2006;161:135-2. CrossRef
    37. Kostarelos K, Bianco A, Prato M. Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat Nanotechnol. 2009;4(10):627-3. CrossRef
    38. Prato M, Kostarelos K, Bianco A. Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res. 2008;41:60-. CrossRef
    39. Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Curr Opin Chem Biol. 2005;9:674-. CrossRef
    40. Li SS, He H, Jiao QC, Chuong PH. Applications of carbon nanotubes in drug and gene delivery. Prog Chem. 2008;20:1798-03.
    41. Lacerda L, Bianco A, Prato M, Kostarelos K. Carbon nanotube cell translocation and delivery of nucleic acids / in vitro and / in vivo. J Mater Chem. 2008;18:17-2. CrossRef
    42. Zhuang L, Robinson JT, Tabakman SM, Yanga K, Dai H. Carbon materials for drug delivery and cancer therapy. Mat Today. 2011;14(7-):316-3.
    43. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Ed. 2005;44(39):6358-2. CrossRef
    44. Pastorin G, Wu W, Wieckowski S, Briand JP, Kostarelos K, Prato M, / et al. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem Commun. 2006;11:1182-. CrossRef
    45. Feazell RP, Nakayama-Ratchford N, Dai H, Lippard S. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum (IV) anticancer drug design. J Am Chem Soc. 2007;129(27):8438-. CrossRef
    46. Dhar S, Liu Z, Thomale J, Dai H, Lippard S. Targeted single-wall carbon nanotube-mediated Pt (IV) prodrug delivery using folate as a homing device. J Am Chem Soc. 2008;130(34):11467-6. CrossRef
    47. Bhirde AA, Patel S, Sousa AAA, Patel V, Molinolo AA, Ji Y, / et al. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine. 2010;5(10):1535-6. CrossRef
    48. Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, / et al. Drug delivery with carbon nanotubes for / in vivo cancer treatment. Cancer Res. 2008;68(16):6652-0. CrossRef
    49. Liu Z, Sun X, Nakayama N, Dai H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. J Am Chem Soc. 2007;1(1):50-.
    50. Liu Z, Robinson JT, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc. 2008;130(33):10876-. CrossRef
    51. Ali-Boucetta H, Al-Jamal KT, McCarthy D, Prato M, Bianco A, Kostarelos K. Multi-walled carbon nanotube–doxorubicin supramolecular complexes for cancer therapeutics. Chem Commun. 2008;4:459-1. CrossRef
    52. Sun X, Liu Z, Welsher K, Robinson T, Goodwin A, Zarc S, / et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1(3):203-2. CrossRef
    53. Kam NWS, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into mammalian cells. J Am Chem Soc. 2004;126:6850-. CrossRef
    54. Kam NWS, Dai H. Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J Am Chem Soc. 2005;127(16):6021-06. CrossRef
    55. Madaeni SS, Derakhshandeh K, Ahmadi S, Vatanpour V, Zinadini S. Effect of modified multi-walled carbon nanotubes on release characteristics of indomethacin from symmetric membrane coated tablets. J Membr Sci. 2012;389:110-. CrossRef
    56. Foldvari M, Bagonluri M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine. 2008;4(3):173-2. CrossRef
    57. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, / et al. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A. 2006;103(9):3357-2. CrossRef
    58. Lacerda L, Herrero MA, Venner K, Bianco A, Prato M, Kostarelos K. Carbon nanotube shape and individualization critical for renal excretion. Small. 2008;4(8):1130-. CrossRef
    59. Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc Natl Acad Sci U S A. 2008;105(5):1410-. CrossRef
    60. Liu Z, Cai W, He L, Nakayama N, Chen K, Sun X, / et al. / In vivo biodistribution and highly efficient tumor targeting of carbon nanotubes in mice. Nat Nanotechnol. 2007;2:47-2. CrossRef
    61. Hadidi N, Kobarfard F, Nafissi-Varcheh N, Aboofazeli R. Optimization of single-walled carbon nanotube solubility by non-covalent PEGylation using experimental design methods. Int J Nanomed. 2011;6:737-6.
    62. Hadidi N, Hosseini Shirazi SF, Kobarfard F, Nafissi-Varcheh N, Aboofazeli R. Evaluation of the effect of PEGylated single-walled carbon nanotubes on viability and proliferation of Jurkat cells. IJPR. 2011;11(1):27-7.
    63. Son SJ, Bai X, Lee SB. Inorganic hollow nanoparticles and nanotubes in nanomedicine. I. Drug/gen delivery applications. Drug Discov Today. 2007;12(15-6):650-. CrossRef
    64. Zakharian TY, Seryshev A, Sitharaman B, Gilbert BE, Knight V, Wilson LJ. A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J Am Chem Soc. 2005;127(36):12508-. CrossRef
    65. Kang B, Chang S, Dai Y, Yu D, Chen D. Cell response to carbon nanotubes: size-dependent intracellular uptake mechanism and subcellular fate. Small. 2010;6(21):2362-. CrossRef
    66. Mu Q, Broughton DL, Yan B. Endosomal leakage and nuclear translocation of multiwalled carbon nanotubes: developing a model for cell uptake. Nano Lett. 2009;9(12):4370-. CrossRef
    67. Moore M. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int. 2006;32(8):967-6. CrossRef
    68. Zhou F, Xing D, Wu B, Wu S, Ou Z, Chen WR. New insights of transmembranal mechanism and subcellular localization of noncovalently modified single-walled carbon nanotubes. Nano Lett. 2010;10(5):1677-1. CrossRef
    69. Jin HD, Heller A, Strano MS. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett. 2008;8(6):1577-5. CrossRef
    70. Beauchesne PR, Chung NSC, Wasan KM. Cyclosporine A: a review of current oral and intravenous delivery systems. Drug Dev Ind Pharm. 2007;33(3):211-0. CrossRef
    71. Pollard S, Nashan B, Johnston A, Hoyer P, Belitsky P, Keown P. A pharmacokinetic and clinical review of the potential clinical impact of using different formulations of cyclosporine A. Clin Ther. 2003;25(6):1654-9. CrossRef
  • 作者单位:Naghmeh Hadidi (1)
    Farzad Kobarfard (2)
    Nastaran Nafissi-Varcheh (3)
    Reza Aboofazeli (1)

    1. Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Vali Asr Avenue, Niayesh Junction, Tehran, PO Box: 14155-6153, 1991953381, Iran
    2. Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
    3. Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
文摘
Single-walled carbon nanotubes (SWCNTs) have attracted the attention of many researchers due to their remarkable physicochemical features and have been found to be a new family of nanovectors for the delivery of therapeutic molecules. The ability of these nanostructures to load large amounts of drug molecules on their outer surface has been considered as the main advantage by many investigators. Here, we report the development of a PEGylated SWCNT-mediated delivery system for cyclosporin A (CsA) as a potent immunosuppressive agent. The available OH group in the CsA structure was first linked to a bi-functional linker (i.e., succinic anhydride) in order to provide a COOH terminal group. CsA succinylation process was optimized by using the modified simplex method. The resulting compound, CsA–CO-CH2)2–COOH, was then grafted onto the exterior surface of SWCNTs, previously PEGylated with phospholipid–PEG5000–NH2 conjugates, through the formation of an amide bond with the free amine group of PEGylated SWCNTs. Drug loading, stability of the PEGylated SWCNT–CsA complex, and in vitro release of the drug were evaluated. Loading efficiencies of almost 72% and 68% were achieved by UV spectrophotometry and elemental analysis methods, respectively. It was observed that 57.3% of cyclosporine was released from CsA–Pl–PEG5000–SWCNTs after 3?days. In this investigation, we conjugated CsA to an amine-terminated phospholipid–polyethylene glycol chain attached on SWCNTs via a cleavable ester bond and demonstrated the possible potential of PEGylated SWCNT-based systems for CsA delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700