用户名: 密码: 验证码:
Large scale physiological readjustment during growth enables rapid, comprehensive and inexpensive systems analysis
详细信息    查看全文
  • 作者:Marc T Facciotti (1) (2)
    Wyming L Pang (1)
    Fang-yin Lo (1)
    Kenia Whitehead (1)
    Tie Koide (1)
    Ken-ichi Masumura (1) (3)
    Min Pan (1)
    Amardeep Kaur (1)
    David J Larsen (2)
    David J Reiss (1)
    Linh Hoang (4)
    Ewa Kalisiak (4)
    Trent Northen (4)
    Sunia A Trauger (4)
    Gary Siuzdak (4)
    Nitin S Baliga (1)
  • 刊名:BMC Systems Biology
  • 出版年:2010
  • 出版时间:December 2010
  • 年:2010
  • 卷:4
  • 期:1
  • 全文大小:1231KB
  • 参考文献:1. Koide T, Pang WL, Baliga NS: The role of predictive modeling in rationally re-engineering biological systems. / Nat Rev Microbiol 2009, 7:297鈥?05.
    2. Bonneau R: Learning biological networks: from modules to dynamics. / Nat Chem Biol 2008, 4:658鈥?64. CrossRef
    3. Madar A, Bonneau R: Learning global models of transcriptional regulatory networks from data. / Methods Mol Biol 2009, 541:181.
    4. Bonneau R, Facciotti MT, Reiss DJ, Schmid AK, Pan M, Kaur A, Thorsson V, Shannon P, Johnson MH, Bare JC, Longabaugh W, Vuthoori M, Whitehead K, Madar A, Suzuki L, Mori T, Chang DE, Diruggiero J, Johnson CH, Hood L, Baliga NS: A predictive model for transcriptional control of physiology in a free living cell. / Cell 2007, 131:1354鈥?365. CrossRef
    5. Faith JJ, Hayete B, Thaden JT, Mogno I, Wierzbowski J, Cottarel G, Kasif S, Collins JJ, Gardner TS: Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. / PLoS Biol 2007, 5:e8. CrossRef
    6. Corbet AS: The Bacterial Growth Curve and the History of Species. / Nature 1933, 131:61鈥?2. CrossRef
    7. Neidhardt FC: Bacterial growth: constant obsession with dN/dt. / J Bacteriol 1999, 181:7405鈥?408.
    8. Winslow C-EA: The Rise and Fall of Bacterial Population. In / The Newer Knowledge of Bacteriology and Immunology. Chicago, IL: University of Chicago Press; 1928:58鈥?3.
    9. Baliga NS, Bjork SJ, Bonneau R, Pan M, Iloanusi C, Kottemann MC, Hood L, DiRuggiero J: Systems level insights into the stress response to UV radiation in the halophilic archaeon Halobacterium NRC-1. / Genome Res 2004, 14:1025鈥?035. CrossRef
    10. Coker JA, Dassarma P, Kumar J, M眉ller JA, Dassarma S: Transcriptional profiling of the model Archaeon Halobacterium sp . NRC-1: responses to changes in salinity and temperature. / Saline Systems 2007, 3:6. CrossRef
    11. Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS: A systems view of haloarchaeal strategies to withstand stress from transition metals. / Genome Res 2006, 16:841鈥?54. CrossRef
    12. M眉ller JA, DasSarma S: Genomic analysis of anaerobic respiration in the archaeon Halobacterium sp . strain NRC-1: dimethyl sulfoxide and trimethylamine N-oxide as terminal electron acceptors. / J Bacteriol 2005, 187:1659鈥?667. CrossRef
    13. Schmid AK, Reiss DJ, Kaur A, Pan M, King N, Van PT, Hohmann L, Martin DB, Baliga NS: The anatomy of microbial cell state transitions in response to oxygen. / Genome Res 2007, 17:1399鈥?413. CrossRef
    14. Twellmeyer J, Wende A, Wolfertz J, Pfeiffer F, Panhuysen M, Zaigler A, Soppa J, Welzl G, Oesterhelt D: Microarray Analysis in the Archaeon Halobacterium salinarum Strain R1. / PLoS One 2007., 2:
    15. Whitehead K, Kish A, Pan M, Kaur A, Reiss DJ, King N, Hohmann L, DiRuggiero J, Baliga NS: An integrated systems approach for understanding cellular responses to gamma radiation. / Mol Syst Biol 2006, 2:47. CrossRef
    16. Facciotti MT, Reiss DJ, Pan M, Kaur A, Vuthoori M, Bonneau R, Shannon P, Srivastava A, Donohoe SM, Hood LE, Baliga NS: General transcription factor specified global gene regulation in archaea. / Proc Natl Acad Sci USA 2007, 104:4630鈥?635. CrossRef
    17. Van PT, Schmid AK, King NL, Kaur A, Pan M, Whitehead K, Koide T, Facciotti MT, Goo YA, Deutsch EW, Reiss DJ, Mallick P, Baliga NS: Halobacterium salinarum NRC-1 PeptideAtlas: toward strategies for targeted proteomics and improved proteome coverage. / J Proteome Res 2008, 7:3755鈥?764. CrossRef
    18. Koide T, Reiss DJ, Bare JC, Pang WL, Facciotti MT, Schmid AK, Pan M, Marzolf B, Van PT, Lo FY, Pratap A, Deutsch EW, Peterson A, Martin D, Baliga NS: Prevalence of transcription promoters within archaeal operons and coding sequences. / Mol Syst Biol 2009, 5:285. CrossRef
    19. Lange C, Zaigler A, Hammelmann M, Twellmeyer J, Raddatz G, Schuster SC, Oesterhelt D, Soppa J: Genome-wide analysis of growth phase-dependent translational and transcriptional regulation in halophilic archaea. / BMC Genomics 2007, 8:415. CrossRef
    20. MacNeill SA: The haloarchaeal chromosome replication machinery. / Biochem Soc Trans 2009, 37:108鈥?13. CrossRef
    21. McCready S, Marcello L: Repair of UV damage in Halobacterium salinarum . / Biochem Soc Trans 2003, 31:694鈥?98. CrossRef
    22. Busch CR, Diruggiero J: MutS and MutL Are Dispensable for Maintenance of the Genomic Mutation Rate in the Halophilic Archaeon Halobacterium salinarum NRC-1. / PLoS One 2010, 5:e9045. CrossRef
    23. Crowley DJ, Boubriak I, Berquist BR, Clark M, Richard E, Sullivan L, DasSarma S, McCready S: The uvrA, uvrB and uvrC genes are required for repair of ultraviolet light induced DNA photoproducts in Halobacterium sp. NRC-1. / Saline Systems 2006, 2:11. CrossRef
    24. Oesterhelt D, Stoeckenius W: Rhodopsin-like protein from the purple membrane of Halobacterium halobium . / Nat New Biol 1971, 233:149鈥?52.
    25. Lanyi JK: Proton transfers in the bacteriorhodopsin photocycle. / Biochim Biophys Acta 2006, 1757:1012鈥?018. CrossRef
    26. Spudich JL: The multitalented microbial sensory rhodopsins. / Trends Microbiol 2006, 14:480鈥?87. CrossRef
    27. Baumann A, Lange C, Soppa J: Transcriptome changes and cAMP oscillations in an archaeal cell cycle. / BMC Cell Biol 2007, 8:21. CrossRef
    28. Shand RF, Betlach MC: Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light. / J Bacteriol 1991, 173:4692鈥?699.
    29. Ideker T, Thorsson V, Siegel AF, Hood LE: Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. / J Comput Biol 2000, 7:805鈥?17. CrossRef
    30. Peck RF, DasSarma S, Krebs MP: Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. / Mol Microbiol 2000, 35:667鈥?76. CrossRef
    31. Saeed AI, Bhagabati NK, Braisted JC, Liang W, Sharov V, Howe EA, Li J, Thiagarajan M, White JA, Quackenbush J: TM4 microarray software suite. / Methods Enzymol 2006, 411:134鈥?93. CrossRef
    32. Gonzalez O, Gronau S, Falb M, Pfeiffer F, Mendoza E, Zimmer R, Oesterhelt D: Reconstruction, modeling & analysis of Halobacterium salinarum R-1 metabolism. / Mol Biosyst 2008, 4:148鈥?59. CrossRef
    33. Bisson R, Vettore S, Aratri E, Sandona D: Subunit change in cytochrome c oxidase: identification of the oxygen switch in Dictyostelium. / EMBO J 1997, 16:739鈥?49. CrossRef
    34. Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V: The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo . / Genome Biol 2006, 7:R36. CrossRef
    35. Teufel K, Bleiholder A, Griesbach T, Pfeifer F: Variations in the multiple tbp genes in different Halobacterium salinarum strains and their expression during growth. / Arch Microbiol 2008, 190:309鈥?18. CrossRef
    36. Ingoldsby LM, Geoghegan KF, Hayden BM, Engel PC: The discovery of four distinct glutamate dehydrogenase genes in a strain of Halobacterium salinarum . / Gene 2005, 349:237鈥?44. CrossRef
    37. Lilley KS, Baker PJ, Linda Britton K, Stillman TJ, Brown PE, Moir AJG, Engel PC, Rice DW, Ellis Bell J, Bell E: The partial amino acid sequence of the NAD -dependent glutamate dehydrogenase of Clostridium symbiosum : implications for the evolution and structural basis of coenzyme specificity. / Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 1991, 1080:191鈥?97. CrossRef
    38. Roon RJ, Even HL: Regulation of the nicotinamide adenine dinucleotide- and nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenases of Saccharomyces cerevisiae . / J Bacteriol 1973, 116:367鈥?72.
    39. Coker JA, DasSarma S: Genetic and transcriptomic analysis of transcription factor genes in the model halophilic Archaeon: coordinate action of TbpD and TfbA. / BMC Genet 2007, 8:61. CrossRef
    40. Gardner PR, Fridovich I: Effect of glutathione on aconitase in Escherichia coli . / Arch Biochem Biophys 1993, 301:98鈥?02. CrossRef
    41. Gruer MJ, Bradbury AJ, Guest JR: Construction and properties of aconitase mutants of Escherichia coli . / Microbiology 1997,143(Pt 6):1837鈥?846. CrossRef
    42. Koziol U, Hannibal L, Rodr铆guez MC, Fabiano E, Kahn ML, Noya F: Deletion of citrate synthase restores growth of Sinorhizobium meliloti 1021 aconitase mutants. / J Bacteriol 2009, 191:7581鈥?586. CrossRef
    43. Lin AP, Hakala KW, Weintraub ST, McAlister-Henn L: Suppression of metabolic defects of yeast isocitrate dehydrogenase and aconitase mutants by loss of citrate synthase. / Arch Biochem Biophys 2008, 474:205鈥?12. CrossRef
    44. Viollier PH, Nguyen KT, Minas W, Folcher M, Dale GE, Thompson CJ: Roles of aconitase in growth, metabolism, and morphological differentiation of Streptomyces coelicolor . / J Bacteriol 2001, 183:3193鈥?203. CrossRef
    45. Schwartz D, Kaspar S, Kienzlen G, Muschko K, Wohlleben W: Inactivation of the tricarboxylic acid cycle aconitase gene from Streptomyces viridochromogenes T眉494 impairs morphological and physiological differentiation. / J Bacteriol 1999, 181:7131鈥?135.
    46. Craig JE, Ford MJ, Blaydon DC, Sonenshein AL: A null mutation in the Bacillus subtilis aconitase gene causes a block in Spo0A-phosphate-dependent gene expression. / J Bacteriol 1997, 179:7351鈥?359.
    47. Somerville GA, Chaussee MS, Morgan CI, Fitzgerald JR, Dorward DW, Reitzer LJ, Musser JM: Staphylococcus aureus aconitase inactivation unexpectedly inhibits post-exponential-phase growth and enhances stationary-phase survival. / Infect Immun 2002, 70:6373鈥?382. CrossRef
    48. Selinger DW, Cheung KJ, Mei R, Johansson EM, Richmond CS, Blattner FR, Lockhart DJ, Church GM: RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. / Nat Biotechnol 2000, 18:1262鈥?268. CrossRef
    49. Xia Q, Wang T, Hendrickson EL, Lie TJ, Hackett M, Leigh JA: Quantitative proteomics of nutrient limitation in the hydrogenotrophic methanogen Methanococcus maripaludis . / BMC Microbiol 2009, 9:149. CrossRef
    50. Hendrickson EL, Liu Y, Rosas-Sandoval G, Porat I, S枚ll D, Whitman WB, Leigh JA: Global responses of Methanococcus maripaludis to specific nutrient limitations and growth rate. / J Bacteriol 2008, 190:2198鈥?205. CrossRef
    51. Hendrickson EL, Haydock AK, Moore BC, Whitman WB, Leigh JA: Functionally distinct genes regulated by hydrogen limitation and growth rate in methanogenic Archaea. / Proc Natl Acad Sci USA 2007, 104:8930鈥?934. CrossRef
    52. Whitehead K, Pan M, Masumura K, Bonneau R, Baliga NS: Diurnally entrained anticipatory behavior in archaea. / PLoS One 2009, 4:e5485. CrossRef
    53. Ng WV, Kennedy SP, Mahairas GG, Berquist B, Pan M, Shukla HD, Lasky SR, Baliga NS, Thorsson V, Sbrogna J, Swartzell S, Weir D, Hall J, Dahl TA, Welti R, Goo YA, Leithauser B, Keller K, Cruz R, Danson MJ, Hough DW, Maddocks DG, Jablonski PE, Krebs MP, Angevine CM, Dale H, Isenbarger TA, Peck RF, Pohlschroder M, Spudich JL, Jung KW, Alam M, Freitas T, Hou S, Daniels CJ, Dennis PP, Omer AD, Ebhardt H, Lowe TM, Liang P, Riley M, Hood L, DasSarma S: Genome sequence of Halobacterium species NRC-1. / Proc Natl Acad Sci USA 2000, 97:12176鈥?2181. CrossRef
    54. Baliga NS, Pan M, Goo YA, Yi EC, Goodlett DR, Dimitrov K, Shannon P, Aebersold R, Ng WV, Hood L: Coordinate regulation of energy transduction modules in Halobacterium sp. analyzed by a global systems approach. / Proc Natl Acad Sci USA 2002, 99:14913鈥?4918. CrossRef
    55. Shannon PT, Reiss DJ, Bonneau R, Baliga NS: The Gaggle: an open-source software system for integrating bioinformatics software and data sources. / BMC Bioinformatics 2006, 7:176. CrossRef
    56. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G: XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. / Anal Chem 2006, 78:779鈥?87. CrossRef
  • 作者单位:Marc T Facciotti (1) (2)
    Wyming L Pang (1)
    Fang-yin Lo (1)
    Kenia Whitehead (1)
    Tie Koide (1)
    Ken-ichi Masumura (1) (3)
    Min Pan (1)
    Amardeep Kaur (1)
    David J Larsen (2)
    David J Reiss (1)
    Linh Hoang (4)
    Ewa Kalisiak (4)
    Trent Northen (4)
    Sunia A Trauger (4)
    Gary Siuzdak (4)
    Nitin S Baliga (1)

    1. Institute for Systems Biology, 1441 North 34th Street, Seattle, WA, 98103, USA
    2. Department of Biomedical Engineering and UC Davis Genome Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA
    3. Division of Genetics and Mutagenesis, National Institute of Health Sciences, Tokyo, 158-8501, Japan
    4. Scripps Research Institute, 10550 North Torrey Pines Road, 92037, La Jolla, Ca, USA
文摘
Background Rapidly characterizing the operational interrelationships among all genes in a given organism is a critical bottleneck to significantly advancing our understanding of thousands of newly sequenced microbial and eukaryotic species. While evolving technologies for global profiling of transcripts, proteins, and metabolites are making it possible to comprehensively survey cellular physiology in newly sequenced organisms, these experimental techniques have not kept pace with sequencing efforts. Compounding these technological challenges is the fact that individual experiments typically only stimulate relatively small-scale cellular responses, thus requiring numerous expensive experiments to survey the operational relationships among nearly all genetic elements. Therefore, a relatively quick and inexpensive strategy for observing changes in large fractions of the genetic elements is highly desirable. Results We have discovered in the model organism Halobacterium salinarum NRC-1 that batch culturing in complex medium stimulates meaningful changes in the expression of approximately two thirds of all genes. While the majority of these changes occur during transition from rapid exponential growth to the stationary phase, several transient physiological states were detected beyond what has been previously observed. In sum, integrated analysis of transcript and metabolite changes has helped uncover growth phase-associated physiologies, operational interrelationships among two thirds of all genes, specialized functions for gene family members, waves of transcription factor activities, and growth phase associated cell morphology control. Conclusions Simple laboratory culturing in complex medium can be enormously informative regarding the activities of and interrelationships among a large fraction of all genes in an organism. This also yields important baseline physiological context for designing specific perturbation experiments at different phases of growth. The integration of such growth and perturbation studies with measurements of associated environmental factor changes is a practical and economical route for the elucidation of comprehensive systems-level models of biological systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700