用户名: 密码: 验证码:
Use of a promiscuous, constitutively-active bacterial enhancer-binding protein to define the σ54 (RpoN) regulon of Salmonella Typhimurium LT2
详细信息    查看全文
  • 作者:David J Samuels (6)
    Jonathan G Frye (7)
    Steffen Porwollik (8)
    Michael McClelland (8)
    Jan Mrázek (6) (9)
    Timothy R Hoover (6)
    Anna C Karls (6)
  • 关键词:Sigma54 ; RpoN ; Bacterial enhancer ; binding protein ; Regulon ; Sigma factor ; Salmonella
  • 刊名:BMC Genomics
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:14
  • 期:1
  • 全文大小:696KB
  • 参考文献:1. Gruber TM, Gross CA: Multiple sigma subunits and the partitioning of bacterial transcription space. / Annu Rev Microbiol 2003, 57:441-66. CrossRef
    2. Ferro-Luzzi Ames G, Nikaido K: Nitrogen regulation in Salmonella typhimurium . Identification of an NtrC protein-binding site and definition of a consensus binding sequence. / EMBO J 1985,4(2):539-47.
    3. Leonhartsberger S, Huber A, Lottspeich F, Bock A: The hydH / G Genes from Escherichia coli code for a zinc and lead responsive two-component regulatory system. / J Mol Biol 2001,307(1):93-05. CrossRef
    4. Palacios S, Escalante-Semerena JC: prpR , ntrA , and ihf functions are required for expression of the prpBCDE operon, encoding enzymes that catabolize propionate in Salmonella enterica serovar Typhimurium LT2. / J Bacteriol 2000,182(4):905-10. CrossRef
    5. Weiner L, Brissette JL, Model P: Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. / Genes Dev 1991,5(10):1912-923. CrossRef
    6. Niehus E, Gressmann H, Ye F, Schlapbach R, Dehio M, Dehio C, Stack A, Meyer TF, Suerbaum S, Josenhans C: Genome-wide analysis of transcriptional hierarchy and feedback regulation in the flagellar system of Helicobacter pylori . / Mol Microbiol 2004,52(4):947-61. CrossRef
    7. Wigneshweraraj S, Bose D, Burrows PC, Joly N, Schumacher J, Rappas M, Pape T, Zhang X, Stockley P, Severinov K, / et al.: Modus operandi of the bacterial RNA polymerase containing the σ 54 promoter-specificity factor. / Mol Microbiol 2008,68(3):538-46. CrossRef
    8. Bush M, Dixon R: The role of bacterial enhancer binding proteins as specialized activators of sigma 54 -dependent transcription. / Microbiol Mol Biol Rev 2012,76(3):497-29. CrossRef
    9. Barrios H, Valderrama B, Morett E: Compilation and analysis of sigma(54)-dependent promoter sequences. / Nucleic Acids Res 1999,27(22):4305-313. CrossRef
    10. Ghosh T, Bose D, Zhang X: Mechanisms for activating bacterial RNA polymerase. / FEMS Microbiol Rev 2010,34(5):611-27.
    11. Belitsky BR, Sonenshein AL: An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis . / Proc Natl Acad Sci USA 1999,96(18):10290-0295. CrossRef
    12. Reitzer LJ, Magasanik B: Transcription of glnA in E . coli is stimulated by activator bound to sites far from the promoter. / Cell 1986,45(6):785-92. CrossRef
    13. Zhao K, Liu M, Burgess RR: Promoter and regulon analysis of nitrogen assimilation factor, sigma 54 , reveal alternative strategy for E . coli MG1655 flagellar biosynthesis. / Nucleic Acids Res 2010,38(4):1273-283. CrossRef
    14. Dong TG, Mekalanos JJ: Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. / Nucleic Acids Res 2012,40(16):7766-775. CrossRef
    15. Leang C, Krushkal J, Ueki T, Puljic M, Sun J, Juarez K, Nunez C, Reguera G, DiDonato R, Postier B, / et al.: Genome-wide analysis of the RpoN regulon in Geobacter sulfurreducens . / BMC Genomics 2009, 10:331. CrossRef
    16. Brahmachary P, Dashti MG, Olson JW, Hoover TR: Helicobacter pylori FlgR is an enhancer-independent activator of σ 54 -RNA polymerase holoenzyme. / J Bacteriol 2004,186(14):4535-542. CrossRef
    17. Xu H, Gu B, Nixon BT, Hoover TR: Purification and characterization of the AAA+?domain of Sinorhizobium meliloti DctD, a sigma 54 -dependent transcriptional activator. / J Bacteriol 2004,186(11):3499-507. CrossRef
    18. Studholme DJ: Enhancer-dependent transcription in Salmonella enterica Typhimurium: new members of the sigma N regulon inferred from protein sequence homology and predicted promoter sites. / J Mol Microbiol Biotechnol 2002,4(4):367-74.
    19. Georg J, Hess WR: cis-antisense RNA, another level of gene regulation in bacteria. / Microbiol Mol Biol Rev 2011,75(2):286-00. CrossRef
    20. Gottesman S, Storz G: Bacterial small RNA regulators: versatile roles and rapidly evolving variations. / Cold Spring Harbor perspectives in biology 2011, 3:12. CrossRef
    21. Kroger C, Dillon SC, Cameron AD, Papenfort K, Sivasankaran SK, Hokamp K, Chao Y, Sittka A, Hebrard M, Handler K, / et al.: The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. / Proc Natl Acad Sci USA 2012,109(20):E1277-286. CrossRef
    22. van Heeswijk WC, Hoving S, Molenaar D, Stegeman B, Kahn D, Westerhoff HV: An alternative PII protein in the regulation of glutamine synthetase in Escherichia coli . / Mol Microbiol 1996,21(1):133-46. CrossRef
    23. Genschik P, Drabikowski K, Filipowicz W: Characterization of the Escherichia coli RNA 3'-terminal phosphate cyclase and its sigma 54 -regulated operon. / J Biol Chem 1998,273(39):25516-5526. CrossRef
    24. Huala E, Stigter J, Ausubel FM: The central domain of Rhizobium leguminosarum DctD functions independently to activate transcription. / J Bacteriol 1992,174(4):1428-431.
    25. Perkins-Balding D, Duval-Valentin G, Glasgow AC: Excision of IS 492 requires flanking target sequences and results in circle formation in Pseudoalteromonas atlantica . / J Bacteriol 1999,181(16):4937-948.
    26. Porwollik S, Frye J, Florea LD, Blackmer F, McClelland M: A non-redundant microarray of genes for two related bacteria. / Nucleic Acids Res 2003,31(7):1869-876. CrossRef
    27. Klose KE, Mekalanos JJ: Simultaneous prevention of glutamine synthesis and high-affinity transport attenuates Salmonella typhimurium virulence. / Infect Immun 1997,65(2):587-96.
    28. Gopel Y, Luttmann D, Heroven AK, Reichenbach B, Dersch P, Gorke B: Common and divergent features in transcriptional control of the homologous small RNAs GlmY and GlmZ in Enterobacteriaceae. / Nucleic Acids Res 2011,39(4):1294-309. CrossRef
    29. Hirschman J, Wong PK, Sei K, Keener J, Kustu S: Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. / Proc Natl Acad Sci USA 1985,82(22):7525-529. CrossRef
    30. Zimmer DP, Soupene E, Lee HL, Wendisch VF, Khodursky AB, Peter BJ, Bender RA, Kustu S: Nitrogen regulatory protein C-controlled genes of Escherichia coli : scavenging as a defense against nitrogen limitation. / Proc Natl Acad Sci USA 2000,97(26):14674-4679. CrossRef
    31. Kiupakis AK, Reitzer L: ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli . / J Bacteriol 2002,184(11):2940-950. CrossRef
    32. Riordan JT, Tietjen JA, Walsh CW, Gustafson JE, Whittam TS: Inactivation of alternative sigma factor 54 (RpoN) leads to increased acid resistance, and alters locus of enterocyte effacement (LEE) expression in Escherichia coli O157: H7. / Microbiology 2010,156(Pt 3):719-30. CrossRef
    33. Gardner AM, Gessner CR, Gardner PR: Regulation of the nitric oxide reduction operon ( norRVW ) in Escherichia coli . Role of NorR and σ 54 in the nitric oxide stress response. / J Biol Chem 2003,278(12):10081-0086. CrossRef
    34. Maier T, Binder U, Bock A: Analysis of the hydA locus of Escherichia coli : two genes ( hydN and hypF ) involved in formate and hydrogen metabolism. / Arch Microbiol 1996,165(5):333-41. CrossRef
    35. Lutz S, Bohm R, Beier A, Bock A: Characterization of divergent NtrA-dependent promoters in the anaerobically expressed gene cluster coding for hydrogenase 3 components of Escherichia coli . / Mol Microbiol 1990,4(1):13-0. CrossRef
    36. Janaszak A, Majczak W, Nadratowska B, Szalewska-Palasz A, Konopa G, Taylor A: A sigma 54 -dependent promoter in the regulatory region of the Escherichia coli rpoH gene. / Microbiology 2007,153(Pt 1):111-23. CrossRef
    37. Ramirez-Santos J, Collado-Vides J, Garcia-Varela M, Gomez-Eichelmann MC: Conserved regulatory elements of the promoter sequence of the gene rpoH of enteric bacteria. / Nucleic Acids Res 2001,29(2):380-86. CrossRef
    38. Lloyd LJ, Jones SE, Jovanovic G, Gyaneshwar P, Rolfe MD, Thompson A, Hinton JC, Buck M: Identification of a new member of the phage shock protein response in Escherichia coli , the phage shock protein G (PspG). / J Biol Chem 2004,279(53):55707-5714. CrossRef
    39. Birkmann A, Sawers RG, Bock A: Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli . / Mol Gen Genet 1987,210(3):535-42. CrossRef
    40. Miller KA, Phillips RS, Mrazek J, Hoover TR: Salmonella utilizes D-glucosaminate via a mannose family phosphotransferase system permease and associated enzymes. / J Bacteriol 2013,195(18):4057-066. CrossRef
    41. Ibanez-Ruiz M, Robbe-Saule V, Hermant D, Labrude S, Norel F: Identification of RpoS (sigma S )-regulated genes in Salmonella enterica serovar typhimurium. / J Bacteriol 2000,182(20):5749-756. CrossRef
    42. Swords WE, Cannon BM, Benjamin WH Jr: Avirulence of LT2 strains of Salmonella typhimurium results from a defective rpoS gene. / Infect Immun 1997,65(6):2451-453.
    43. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. / Science 2007,315(5819):1709-712. CrossRef
    44. Wiedenheft B, Zhou K, Jinek M, Coyle SM, Ma W, Doudna JA: Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. / Structure 2009,17(6):904-12. CrossRef
    45. Buck M, Cannon W: Specific binding of the transcription factor σ 54 to promoter DNA. / Nature 1992,358(6385):422-24. CrossRef
    46. Mrazek J: Finding sequence motifs in prokaryotic genomes–a brief practical guide for a microbiologist. / Brief Bioinform 2009,10(5):525-36. CrossRef
    47. Crooks GE, Hon G, Chandonia JM, Brenner SE: WebLogo: a sequence logo generator. / Genome Res 2004,14(6):1188-190. CrossRef
    48. Doucleff M, Pelton JG, Lee PS, Nixon BT, Wemmer DE: Structural basis of DNA recognition by the alternative sigma-factor, σ 54 . / J Mol Biol 2007,369(4):1070-078. CrossRef
    49. Cannon W, Wigneshweraraj SR, Buck M: Interactions of regulated and deregulated forms of the sigma 54 holoenzyme with heteroduplex promoter DNA. / Nucleic Acids Res 2002,30(4):886-93. CrossRef
    50. Li GW, Elf J: Single molecule approaches to transcription factor kinetics in living cells. / FEBS Lett 2009,583(24):3979-983. CrossRef
    51. Johansson LU, Solera D, Bernardo LM, Moscoso JA, Shingler V: sigma 54 -RNA polymerase controls sigma 70 -dependent transcription from a non-overlapping divergent promoter. / Mol Microbiol 2008,70(3):709-23. CrossRef
    52. Friedman LJ, Gelles J: Mechanism of transcription initiation at an activator-dependent promoter defined by single-molecule observation. / Cell 2012,148(4):679-89. CrossRef
    53. Feklistov A, Mekler V, Jiang Q, Westblade LF, Irschik H, Jansen R, Mustaev A, Darst SA, Ebright RH: Rifamycins do not function by allosteric modulation of binding of Mg 2+ to the RNA polymerase active center. / Proc Natl Acad Sci USA 2008,105(39):14820-4825. CrossRef
    54. Raffaelle M, Kanin EI, Vogt J, Burgess RR, Ansari AZ: Holoenzyme switching and stochastic release of sigma factors from RNA polymerase in vivo. / Mol Cell 2005,20(3):357-66. CrossRef
    55. Maeda H, Fujita N, Ishihama A: Competition among seven Escherichia coli sigma subunits: relative binding affinities to the core RNA polymerase. / Nucleic Acids Res 2000,28(18):3497-503. CrossRef
    56. Grigorova IL, Phleger NJ, Mutalik VK, Gross CA: Insights into transcriptional regulation and sigma competition from an equilibrium model of RNA polymerase binding to DNA. / Proc Natl Acad Sci USA 2006,103(14):5332-337. CrossRef
    57. Dong T, Yu R, Schellhorn H: Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli . / Mol Microbiol 2011,79(2):375-86. CrossRef
    58. Chaudhuri RR, Yu L, Kanji A, Perkins TT, Gardner PP, Choudhary J, Maskell DJ, Grant AJ: Quantitative RNA-seq analysis of the Campylobacter jejuni transcriptome. / Microbiology 2011,157(Pt 10):2922-932. CrossRef
    59. Damron FH, Owings JP, Okkotsu Y, Varga JJ, Schurr JR, Goldberg JB, Schurr MJ, Yu HD: Analysis of the Pseudomonas aeruginosa regulon controlled by the sensor kinase KinB and sigma factor RpoN. / J Bacteriol 2012,194(6):1317-330. CrossRef
    60. Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, Lory S, Ramphal R: A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa . / Mol Microbiol 2003,50(3):809-24. CrossRef
    61. Francke C, Groot Kormelink T, Hagemeijer Y, Overmars L, Sluijter V, Moezelaar R, Siezen RJ: Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. / BMC Genomics 2011, 12:385. CrossRef
    62. Xiao Y, Wigneshweraraj SR, Weinzierl R, Wang YP, Buck M: Construction and functional analyses of a comprehensive sigma54 site-directed mutant library using alanine-cysteine mutagenesis. / Nucleic Acids Res 2009,37(13):4482-497. CrossRef
    63. Buck M, Gallegos MT, Studholme DJ, Guo Y, Gralla JD: The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. / J Bacteriol 2000,182(15):4129-136. CrossRef
    64. Grana D, Youderian P, Susskind MM: Mutations that improve the ant promoter of Salmonella phage P22. / Genetics 1985,110(1):1-6.
    65. Kelly MT, Hoover TR: Mutant forms of Salmonella typhimurium sigma 54 defective in transcription initiation but not promoter binding activity. / J Bacteriol 1999,181(11):3351-357.
    66. Maloy S, Stewart VJ, Taylor RK: / Genetic Analysis of Pathogenic Bacteria: A Laboratory Manual. Plainview, NY: Cold Spring Harbor Laboratory Press; 1996.
    67. Kustu SG, McFarland NC, Hui SP, Esmon B, Ames GF: Nitrogen control of Salmonella typhimurium : co-regulation of synthesis of glutamine synthetase and amino acid transport systems. / J Bacteriol 1979,138(1):218-34.
    68. Hughes KT, Youderian P, Simon MI: Phase variation in Salmonella : analysis of Hin recombinase and hix recombination site interaction in vivo. / Genes Dev 1988,2(8):937-48. CrossRef
    69. Wang Q, Frye JG, McClelland M, Harshey RM: Gene expression patterns during swarming in Salmonella typhimurium : genes specific to surface growth and putative new motility and pathogenicity genes. / Mol Microbiol 2004,52(1):169-87. CrossRef
    70. Porwollik S, McClelland M: Lateral gene transfer in Salmonella . / Microbes Infect 2003,5(11):977-89. CrossRef
    71. Xia XQ, McClelland M, Porwollik S, Song W, Cong X, Wang Y: WebArrayDB: cross-platform microarray data analysis and public data repository. / Bioinformatics 2009,25(18):2425-429. CrossRef
    72. Xia X, McClelland M, Wang Y: WebArray: an online platform for microarray data analysis. / BMC Bioinforma 2005, 6:306. CrossRef
    73. Kelly MT, Hoover TR: The amino terminus of Salmonella enterica serovar Typhimurium sigma 54 is required for interactions with an enhancer-binding protein and binding to fork junction DNA. / J Bacteriol 2000,182(2):513-17. CrossRef
    74. Miller JH: / A Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Plainview, NY: Cold Spring Harbor Press; 1992.
  • 作者单位:David J Samuels (6)
    Jonathan G Frye (7)
    Steffen Porwollik (8)
    Michael McClelland (8)
    Jan Mrázek (6) (9)
    Timothy R Hoover (6)
    Anna C Karls (6)

    6. Department of Microbiology, University of Georgia, 30602, Athens, GA, USA
    7. US Department of Agriculture, Bacterial Epidemiology and Antimicrobial Resistance Research Unit, Richard B. Russell Research Center, Agricultural Research Service, 30605, Athens, GA, USA
    8. Department of Microbiology and Molecular Genetics, University of California, 92697, Irvine, CA, USA
    9. Institute of Bioinformatics, University of Georgia, 30602, Athens, GA, USA
文摘
Background Sigma54, or RpoN, is an alternative σ factor found widely in eubacteria. A significant complication in analysis of the global σ54 regulon in a bacterium is that the σ54 RNA polymerase holoenzyme requires interaction with an active bacterial enhancer-binding protein (bEBP) to initiate transcription at a σ54-dependent promoter. Many bacteria possess multiple bEBPs, which are activated by diverse environmental stimuli. In this work, we assess the ability of a promiscuous, constitutively-active bEBP—the AAA+ ATPase domain of DctD from Sinorhizobium meliloti—to activate transcription from all σ54-dependent promoters for the characterization of the σ54 regulon of Salmonella Typhimurium LT2. Results The AAA+?ATPase domain of DctD was able to drive transcription from nearly all previously characterized or predicted σ54-dependent promoters in Salmonella under a single condition. These promoters are controlled by a variety of native activators and, under the condition tested, are not transcribed in the absence of the DctD AAA+?ATPase domain. We also identified a novel σ54-dependent promoter upstream of STM2939, a homolog of the cas1 component of a CRISPR system. ChIP-chip analysis revealed at least 70 σ54 binding sites in the chromosome, of which 58% are located within coding sequences. Promoter-lacZ fusions with selected intragenic σ54 binding sites suggest that many of these sites are capable of functioning as σ54-dependent promoters. Conclusion Since the DctD AAA+?ATPase domain proved effective in activating transcription from the diverse σ54-dependent promoters of the S. Typhimurium LT2 σ54 regulon under a single growth condition, this approach is likely to be valuable for examining σ54 regulons in other bacterial species. The S. Typhimurium σ54 regulon included a high number of intragenic σ54 binding sites/promoters, suggesting that σ54 may have multiple regulatory roles beyond the initiation of transcription at the start of an operon.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700