用户名: 密码: 验证码:
Antigen stimulation of peripheral blood mononuclear cells from Mycobacterium bovis infected cattle yields evidence for a novel gene expression program
详细信息    查看全文
  • 作者:Kieran G Meade (1)
    Eamonn Gormley (2)
    Cliona O'Farrelly (1)
    Stephen D Park (3)
    Eamon Costello (4)
    Joseph Keane (5)
    Yingdong Zhao (6)
    David E MacHugh (3) (7)
  • 刊名:BMC Genomics
  • 出版年:2008
  • 出版时间:December 2008
  • 年:2008
  • 卷:9
  • 期:1
  • 全文大小:1529KB
  • 参考文献:1. Phillips CJ, Foster CR, Morris PA, Teverson R: The transmission of m>Mycobacterium bovis infection to cattle. / Res Vet Sci 2003,74(1):1-5. CrossRef
    2. Neill SD, Cassidy J, Hanna J, Mackie DP, Pollock JM, Clements A, Walton E, Bryson DG: Detection of m>Mycobacterium bovis infection in skin test-negative cattle with an assay for bovine interferon-gamma. / Vet Rec 1994,135(6):134-35. CrossRef
    3. Gormley E, Doyle MB, McGill K, Costello E, Good M, Collins JD: The effect of the tuberculin test and the consequences of a delay in blood culture on the sensitivity of a gamma-interferon assay for the detection of m>Mycobacterium bovis infection in cattle. / Vet Immunol Immunopathol 2004,102(4):413-20. mm.2004.08.002">CrossRef
    4. Lepper AW, Pearson CW, Corner LA: Anergy to tuberculin in beef cattle. / Aust Vet J 1977,53(5):214-16. CrossRef
    5. Aldwell FE, Wedlock DN, Slobbe LJ, Griffin JF, Buddle BM, Buchan GS:m>In vitro control of m>Mycobacterium bovis by macrophages. / Tuberculosis (Edinb) 2001,81(1-):115-23. CrossRef
    6. Pollock JM, Neill SD:m>Mycobacterium bovis infection and tuberculosis in cattle. / Vet J 2002,163(2):115-27. CrossRef
    7. Pollock JM, Welsh MD, McNair J: Immune responses in bovine tuberculosis: towards new strategies for the diagnosis and control of disease. / Vet Immunol Immunopathol 2005,108(1-):37-3. mm.2005.08.012">CrossRef
    8. Werling D, Jungi TW: TOLL-like receptors linking innate and adaptive immune response. / Vet Immunol Immunopathol 2003,91(1):1-2. CrossRef
    9. Werling D, Coffey TJ: Pattern recognition receptors in companion and farm animals - The key to unlocking the door to animal disease? / Vet J 2006.
    10. Werling D, Piercy J, Coffey TJ: Expression of TOLL-like receptors (TLR) by bovine antigen-presenting cells-potential role in pathogen discrimination? / Vet Immunol Immunopathol 2006,112(1-):2-1. mm.2006.03.007">CrossRef
    11. Thacker TC, Palmer MV, Waters WR: Associations between cytokine gene expression and pathology in m>Mycobacterium bovis infected cattle. / Vet Immunol Immunopathol 2007,119(3-):204-13. mm.2007.05.009">CrossRef
    12. McGuire K, Glass EJ: The expanding role of microarrays in the investigation of macrophage responses to pathogens. / Vet Immunol Immunopathol 2005,105(3-):259-75. mm.2005.02.001">CrossRef
    13. Belcher CE, Drenkow J, Kehoe B, Gingeras TR, McNamara N, Lemjabbar H, Basbaum C, Relman DA: The transcriptional responses of respiratory epithelial cells to m>Bordetella pertussis reveal host defensive and pathogen counter-defensive strategies. / Proc Natl Acad Sci USA 2000,97(25):13847-3852. CrossRef
    14. Cohen P, Bouaboula M, Bellis M, Baron V, Jbilo O, Poinot-Chazel C, Galiegue S, Hadibi EH, Casellas P: Monitoring cellular responses to m>Listeria monocytogenes with oligonucleotide arrays. / J Biol Chem 2000,275(15):11181-1190. CrossRef
    15. Detweiler CS, Cunanan DB, Falkow S: Host microarray analysis reveals a role for the m>Salmonella response regulator phoP in human macrophage cell death. / Proc Natl Acad Sci USA 2001,98(10):5850-855. CrossRef
    16. Kagnoff MF, Eckmann L: Analysis of host responses to microbial infection using gene expression profiling. / Curr Opin Microbiol 2001,4(3):246-50. CrossRef
    17. Coussens PM, Colvin CJ, Wiersma K, Abouzied A, Sipkovsky S: Gene expression profiling of peripheral blood mononuclear cells from cattle infected with m>Mycobacterium paratuberculosis. / Infect Immun 2002,70(10):5494-502. CrossRef
    18. Wang JP, Rought SE, Corbeil J, Guiney DG: Gene expression profiling detects patterns of human macrophage responses following m>Mycobacterium tuberculosis infection. / FEMS Immunol Med Microbiol 2003,39(2):163-72. CrossRef
    19. Xu Y, Xie J, Li Y, Yue J, Chen J, Chunyu L, Wang H: Using a cDNA microarray to study cellular gene expression altered by m>Mycobacterium tuberculosis. / Chin Med J (Engl) 2003,116(7):1070-073.
    20. Blumenthal A, Lauber J, Hoffmann R, Ernst M, Keller C, Buer J, Ehlers S, Reiling N: Common and unique gene expression signatures of human macrophages in response to four strains of m>Mycobacterium avium that differ in their growth and persistence characteristics. / Infect Immun 2005,73(6):3330-341. CrossRef
    21. Staudt LM, Brown PO: Genomic views of the immune system. / Annu Rev Immunol 2000, 18:829-59. mmunol.18.1.829">CrossRef
    22. Meade KG, Gormley E, Park SD, Fitzsimons T, Rosa GJ, Costello E, Keane J, Coussens PM, MacHugh DE: Gene expression profiling of peripheral blood mononuclear cells (PBMC) from m>Mycobacterium bovis infected cattle after m>in vitro antigenic stimulation with purified protein derivative of tuberculin (PPD). / Vet Immunol Immunopathol 2006,113(1-):73-9. mm.2006.04.012">CrossRef
    23. Rhodes SG, Buddle BM, Hewinson RG, Vordermeier HM: Bovine tuberculosis: immune responses in the peripheral blood and at the site of active disease. / Immunology 2000,99(2):195-02. CrossRef
    24. Meade KG, Gormley E, Doyle MB, Fitzsimons T, O' Farrelly C, Costello E, Keane J, Zhao Y, MacHugh DE: Innate gene repression associated with m>Mycobacterium bovis infection in cattle: toward a gene signature of disease. / BMC Genomics 2007,8(1):400. CrossRef
    25. Dobbin K, Shih JH, Simon R: Questions and answers on design of dual-label microarrays for identifying differentially expressed genes. / J Natl Cancer Inst 2003,95(18):1362-369.
    26. Simon RM: Design and analysis of DNA microarray investigations. New York; London: Springer 2003.
    27. Simon R: Microarray-based expression profiling and informatics. / Curr Opin Biotechnol 2008,19(1):26-9. CrossRef
    28. Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R: NCBI GEO: mining tens of millions of expression profiles-database and tools update. / Nucleic acids research 2007, (35 Database):D760-65.
    29. Miller MD, Krangel MS: The human cytokine I-309 is a monocyte chemoattractant. / Proc Natl Acad Sci USA 1992,89(7):2950-954. CrossRef
    30. Zhang G, Ghosh S: Negative regulation of toll-like receptor-mediated signaling by Tollip. / J Biol Chem 2002,277(9):7059-065. CrossRef
    31. Yamamoto M, Sato S, Hemmi H, Uematsu S, Hoshino K, Kaisho T, Takeuchi O, Takeda K, Akira S: TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. / Nat Immunol 2003,4(11):1144-150. CrossRef
    32. Perry BD, Randolph TF, McDermott JJ, Sones KR, Thornton PK: Investing in animal health research to alleviate poverty. Kenya: International Livestock Research Institute (ILRI) 2002.
    33. Gormley E: Diagnosis of m>Mycobacterium bovis infection in cattle. / 27th International Dairy Federation, World Dairy Conference: 2007; Shanghai, China 2007.
    34. Jenner RG, Young RA: Insights into host responses against pathogens from transcriptional profiling. / Nat Rev Microbiol 2005,3(4):281-94. micro1126">CrossRef
    35. Oshiumi H, Sasai M, Shida K, Fujita T, Matsumoto M, Seya T: TIR-containing adapter molecule (TICAM)-2, a bridging adapter recruiting to toll-like receptor 4 TICAM-1 that induces interferon-beta. / J Biol Chem 2003,278(50):49751-9762. CrossRef
    36. Netea MG, Meer JW, Sutmuller RP, Adema GJ, Kullberg BJ: From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. / Antimicrob Agents Chemother 2005,49(10):3991-996. CrossRef
    37. Netea MG, Meer JW, Kullberg BJ: Toll-like receptors as an escape mechanism from the host defense. / Trends Microbiol 2004,12(11):484-88. m.2004.09.004">CrossRef
    38. Hirsch CS, Yoneda T, Averill L, Ellner JJ, Toossi Z: Enhancement of intracellular growth of m>Mycobacterium tuberculosis in human monocytes by transforming growth factor-beta 1. / J Infect Dis 1994,170(5):1229-237.
    39. Boussiotis VA, Tsai EY, Yunis EJ, Thim S, Delgado JC, Dascher CC, Berezovskaya A, Rousset D, Reynes JM, Goldfeld AE: IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. / J Clin Invest 2000,105(9):1317-325. CrossRef
    40. Murray PJ: Defining the requirements for immunological control of mycobacterial infections. / Trends Microbiol 1999,7(9):366-72. CrossRef
    41. Jacobs M, Brown N, Allie N, Gulert R, Ryffel B: Increased resistance to mycobacterial infection in the absence of interleukin-10. / Immunology 2000,100(4):494-01. CrossRef
    42. Weiss DJ, Evanson OA, de Souza C, Abrahamsen MS: A critical role of interleukin-10 in the response of bovine macrophages to infection by m>Mycobacterium avium subsp m>paratuberculosis. / Am J Vet Res 2005,66(4):721-26. CrossRef
    43. Welsh MD, Cunningham RT, Corbett DM, Girvin RM, McNair J, Skuce RA, Bryson DG, Pollock JM: Influence of pathological progression on the balance between cellular and humoral immune responses in bovine tuberculosis. / Immunology 2005,114(1):101-11. CrossRef
    44. Thacker TC, Palmer MV, Waters WR: Correlation of cytokine gene expression with pathology in white-tailed deer ( m>Odocoileus virginianus ) infected with m>Mycobacterium bovis. / Clin Vaccine Immunol 2006,13(6):640-47. CrossRef
    45. Lesellier S, Corner L, Costello E, Sleeman P, Lyashchenko K, Greenwald R, Esfandiari J, Singh M, Hewinson RG, Chambers M, / et al.: Antigen specific immunological responses of badgers ( m>Meles meles ) experimentally infected with m>Mycobacterium bovis. / Vet Immunol Immunopathol 2008,122(1-):35-5. mm.2007.11.005">CrossRef
    46. Fernandez de Mera IG, Perez de la Lastra JM, Ayoubi P, Naranjo V, Kocan KM, Gortazar C, de la Fuente J: Differential expression of inflammatory and immune response genes in mesenteric lymph nodes of Iberian red deer ( m>Cervus elaphus hispanicus ) naturally infected with m>Mycobacterium bovis. / Dev Comp Immunol 2008,32(2):85-1. CrossRef
    47. Coussens PM, Colvin CJ, Rosa GJ, Perez Laspiur J, Elftman MD: Evidence for a novel gene expression program in peripheral blood mononuclear cells from m>Mycobacterium avium subsp. m>paratuberculosis -infected cattle. / Infect Immun 2003,71(11):6487-498. CrossRef
    48. Coussens PM, Jeffers A, Colvin C: Rapid and transient activation of gene expression in peripheral blood mononuclear cells from Johne's disease positive cows exposed to m>Mycobacterium paratuberculosis in vitro. / Microb Pathog 2004,36(2):93-08. micpath.2003.09.007">CrossRef
    49. Coussens PM, Verman N, Coussens MA, Elftman MD, McNulty AM: Cytokine gene expression in peripheral blood mononuclear cells and tissues of cattle infected with m>Mycobacterium avium subsp. m>paratuberculosis : evidence for an inherent proinflammatory gene expression pattern. / Infect Immun 2004,72(3):1409-422. CrossRef
    50. Coussens PM: Model for immune responses to m>Mycobacterium avium subspecies m>paratuberculosis in cattle. / Infect Immun 2004,72(6):3089-096. CrossRef
    51. Koul A, Herget T, Klebl B, Ullrich A: Interplay between mycobacteria and host signalling pathways. / Nat Rev Microbiol 2004,2(3):189-02. micro840">CrossRef
    52. Reiling N, Holscher C, Fehrenbach A, Kroger S, Kirschning CJ, Goyert S, Ehlers S: Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with m>Mycobacterium tuberculosis. / J Immunol 2002,169(7):3480-484.
    53. Doherty TM, Arditi M: TB, or not TB: that is the question - does TLR signaling hold the answer? / J Clin Invest 2004,114(12):1699-703.
    54. Quesniaux V, Fremond C, Jacobs M, Parida S, Nicolle D, Yeremeev V, Bihl F, Erard F, Botha T, Drennan M, / et al.: Toll-like receptor pathways in the immune responses to mycobacteria. / Microbes Infect 2004,6(10):946-59. micinf.2004.04.016">CrossRef
    55. Takeda K, Akira S: Toll-like receptors in innate immunity. / Int Immunol 2005,17(1):1-4. mm/dxh186">CrossRef
    56. Rothel JS, Jones SL, Corner LA, Cox JC, Wood PR: A sandwich enzyme immunoassay for bovine interferon-gamma and its use for the detection of tuberculosis in cattle. / Aust Vet J 1990,67(4):134-37. CrossRef
    57. Costello E, Quigley F, Flynn O, Gogarty A, McGuirk J, Murphy A, Dolan L: Laboratory examination of suspect tuberculous lesions detected on abattoir postmortem examination of cattle from non-reactor herds. / Irish Vet J 1998,51(5):248-50.
    58. Ulmer AJ, Scholz W, Ernst M, Brandt E, Flad HD: Isolation and subfractionation of human peripheral blood mononuclear cells (PBMC) by density gradient centrifugation on Percoll. / Immunobiology 1984,166(3):238-50.
    59. Coussens PM, Nobis W: Bioinformatics and high throughput approach to create genomic resources for the study of bovine immunobiology. / Vet Immunol Immunopathol 2002,86(3-):229-44. CrossRef
    60. Evans AC, Ireland JL, Winn ME, Lonergan P, Smith GW, Coussens PM, Ireland JJ: Identification of genes involved in apoptosis and dominant follicle development during follicular waves in cattle. / Biol Reprod 2004,70(5):1475-484. CrossRef
    61. Novoradovskaya N, Whitfield ML, Basehore LS, Novoradovsky A, Pesich R, Usary J, Karaca M, Wong WK, Aprelikova O, Fero M, / et al.: Universal Reference RNA as a standard for microarray experiments. / BMC Genomics 2004,5(1):20. CrossRef
    62. Quackenbush J: Microarray data normalization and transformation. / Nat Genet 2002,32(Suppl):496-01. CrossRef
    63. Simon R, Lam A, Li M-C, Ngan M, Menenzes S, Zhao Y: Analysis of gene expression data using BRB-Array Tools. / Cancer Inform 2007, 2:11-7.
    64. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. / Methods 2001,25(4):402-08. meth.2001.1262">CrossRef
  • 作者单位:Kieran G Meade (1)
    Eamonn Gormley (2)
    Cliona O'Farrelly (1)
    Stephen D Park (3)
    Eamon Costello (4)
    Joseph Keane (5)
    Yingdong Zhao (6)
    David E MacHugh (3) (7)

    1. Comparative Immunology Group, School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
    2. Tuberculosis Diagnostics and Immunology Research Centre, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Dublin 4, Ireland
    3. Animal Genomics Laboratory, School of Agriculture, Food Science and Veterinary Medicine, College of Life Sciences, University College Dublin, Dublin 4, Ireland
    4. Central Veterinary Research Laboratory, Backweston Campus, Celbridge, Co. Kildare, Ireland
    5. School of Medicine, Trinity College Dublin, St. James's Hospital, Dublin 8, Ireland
    6. Computational and Systems Biology Group, Biometric Research Branch, National Cancer Institute, Rockville, Maryland, USA
    7. Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
文摘
Background Bovine tuberculosis (BTB) caused by Mycobacterium bovis continues to cause substantial losses to global agriculture and has significant repercussions for human health. The advent of high throughput genomics has facilitated large scale gene expression analyses that present a novel opportunity for revealing the molecular mechanisms underlying mycobacterial infection. Using this approach, we have previously shown that innate immune genes in peripheral blood mononuclear cells (PBMC) from BTB-infected animals are repressed in vivo in the absence of exogenous antigen stimulation. In the present study, we hypothesized that the PBMC from BTB-infected cattle would display a distinct gene expression program resulting from exposure to M. bovis. A functional genomics approach was used to examine the immune response of BTB-infected (n = 6) and healthy control (n = 6) cattle to stimulation with bovine tuberculin (purified protein derivative - PPD-b) in vitro. PBMC were harvested before, and at 3 h and 12 h post in vitro stimulation with bovine tuberculin. Gene expression changes were catalogued within each group using a reference hybridization design and a targeted immunospecific cDNA microarray platform (BOTL-5) with 4,800 spot features representing 1,391 genes. Results 250 gene spot features were significantly differentially expressed in BTB-infected animals at 3 h post-stimulation contrasting with only 88 gene spot features in the non-infected control animals (P ?0.05). At 12 h post-stimulation, 56 and 80 gene spot features were differentially expressed in both groups respectively. The results provided evidence of a proinflammatory gene expression profile in PBMC from BTB-infected animals in response to antigen stimulation. Furthermore, a common panel of eighteen genes, including transcription factors were significantly expressed in opposite directions in both groups. Real-time quantitative reverse transcription PCR (qRT-PCR) demonstrated that many innate immune genes, including components of the TLR pathway and cytokines were differentially expressed in BTB-infected (n = 8) versus control animals (n = 8) after stimulation with bovine tuberculin. Conclusion The PBMC from BTB-infected animals exhibit different transcriptional profiles compared with PBMC from healthy control animals in response to M. bovis antigen stimulation, providing evidence of a novel gene expression program due to M. bovis exposure.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700