用户名: 密码: 验证码:
Insight into the molecular mechanism about lowered dihydrofolate binding affinity to dihydrofolate reductase-like 1 (DHFRL1)
详细信息    查看全文
文摘
Human dihydrofolate reductase-like 1 (DHFRL1) has been identified as a second human dihydrofolate reductase (DHFR) enzyme. Although DHFRL1 have high sequence homology with human DHFR, dihydrofolate (DHF) exhibits a lowered binding affinity to DHFRL1 and the corresponding molecular mechanism is still unknown. To address this question, we studied the binding of DHF to DHFRL1 and DHFR by using molecular dynamics simulation. Moreover, to investigate the role the 24th residue of DHFR/DHFRL1 plays in DHF binding, R24W DHFRL1 mutant was also studied. The van der Waals interaction are more crucial for the total DHF binding energies, while the difference between the DHF binding energies of human DHFR and DHFRL1 can be attributed to the electrostatic interaction and the polar desolvation free energy. More specifically, lower DHF affinity to DHFRL1 can be mainly attributed to the reduction of net electrostatic interactions of residues Arg32 and Gln35 of DHFRL1 with DHF as being affected by Arg24. The side chain of Arg24 in DHFRL1 can extend deeply into the binding sites of DHF and NADPH, and disturb the DHF binding by steric effect, which rarely happens in human DHFR and R24W DHFRL1 mutant. Additionally, the conformation of loop I in DHFRL1 was also studied in this work. Interestingly, the loop conformation resemble to normal closed state of Escherichia coli DHFR other than the closed state of human DHFR. We hope this work will be useful to understand the general characteristics of DHFRL1.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700