用户名: 密码: 验证码:
Effect of compressed TiO2 nanoparticle thin film thickness on the performance of dye-sensitized solar cells
详细信息    查看全文
  • 作者:Jenn Kai Tsai (6)
    Wen Dung Hsu (7)
    Tian Chiuan Wu (6)
    Teen Hang Meen (6)
    Wen Jie Chong (6)
  • 关键词:Mechanism compression ; Thickness ; Dye ; sensitized solar cells (DSSCs) ; TiO2 ; Doctor blading method
  • 刊名:Nanoscale Research Letters
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:8
  • 期:1
  • 全文大小:364 KB
  • 参考文献:1. Green MA, Emery K, Hishikawa Y, Warta W: Solar cell efficiency tables (version 31). / Prog Photovolt Res Appl 2008, 16:61-7. CrossRef
    2. O'Regan B, Gratzel M: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO 2 films. / Nature 1991, 353:737-40. CrossRef
    3. Lin L-Y, Yeh M-H, Lee C-P, Chou C-Y, Vittal R, Ho K-C: Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles. / Electrochim Acta 2012, 62:341-47. CrossRef
    4. Hwang D-K, Lee B, Kim D-H: Efficiency enhancement in solid dye-sensitized solar cell by three-dimensional photonic crystal. / RSC Advances 2013, 3:3017-023. CrossRef
    5. Kruse N, Chenakin S: XPS characterization of Au/TiO 2 catalysts: binding energy assessment and irradiation effects. / Appl Catal A Gen 2011, 391:367-76. CrossRef
    6. Konstantinidis S, Dauchot JP, Hecq M: Titanium oxide thin films deposited by high-power impulse magnetron sputtering. / Thin Solid Films 2006, 515:1182-186. CrossRef
    7. Robertson N: Optimizing dyes for dye-sensitized solar cells. / Angew Chem Int Ed 2006, 45:2338-345. CrossRef
    8. Yang S, Kou H, Wang J, Xue H, Han H: Tunability of the band energetics of nanostructured SrTiO 3 electrodes for dye-sensitized solar cells. / J Phys Chem C 2010, 114:4245-249. CrossRef
    9. Gratzel M: The advent of mesoscopic injection solar cells. / Prog Photovolt Res Appl 2006, 14:429-42. CrossRef
    10. Gledhill SE, Scott B, Gregg BA: Organic and nano-structured composite photovoltaics: an overview. / J Mater Res 2005, 20:3167-179. CrossRef
    11. Gorlov M, Kloo L: Ionic liquid electrolytes for dye-sensitized solar cells. / Dalton Trans 2008, 37:2655-666. CrossRef
    12. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B: Ionic-liquid materials for the electrochemical challenges of the future. / Nat Mater 2009, 8:621-29. CrossRef
    13. Chiu RC, Garino TJ, Cima MJ: Drying of granular ceramic films: I, effect of processing variables on cracking behavior. / J Am Ceram Soc 1993, 76:2257-264. CrossRef
    14. Chiu RC, Cima MJ: Drying of granular ceramic films: II, drying stress and saturation uniformity. / J Am Ceram Soc 1993, 76:2769-777. CrossRef
    15. Sarkar P, De HRD: Synthesis and microstructural manipulation of ceramics by electrophoretic deposition. / J Mater Sci 2004, 39:819-23. CrossRef
    16. Scherer GW: Theory of drying. / J Am Cerum Soc 1990, 73:3-4. CrossRef
    17. Lee K-M, Hsu Y-C, Ikegami M, Miyasaka T, Thomas KRJ, Linb JT, Ho K-C: Co-sensitization promoted light harvesting for plastic dye-sensitized solar cells. / J Power Sources 2011, 196:2416-421. CrossRef
  • 作者单位:Jenn Kai Tsai (6)
    Wen Dung Hsu (7)
    Tian Chiuan Wu (6)
    Teen Hang Meen (6)
    Wen Jie Chong (6)

    6. Department of Electronic Engineering, National Formosa University, Yunlin, 632, Taiwan
    7. Department of Materials Science and Engineering, National Cheng Kung University, Tainan City, 701, Taiwan
  • ISSN:1556-276X
文摘
In this study, dye-sensitized solar cells (DSSCs) were fabricated using nanocrystalline titanium dioxide (TiO2) nanoparticles as photoanode. Photoanode thin films were prepared by doctor blading method with 420 kg/cm2 of mechanical compression process and heat treatment in the air at 500°C for 30 min. The optimal thickness of the TiO2 NP photoanode is 26.6 μm with an efficiency of 9.01% under AM 1.5G illumination at 100 mW/cm2. The efficiency is around two times higher than that of conventional DSSCs with an uncompressed photoanode. The open-circuit voltage of DSSCs decreases as the thickness increases. One DSSC (sample D) has the highest conversion efficiency while it has the maximum short-circuit current density. The results indicate that the short-circuit current density is a compromise between two conflict factors: enlargement of the surface area by increasing photoanode thickness and extension of the electron diffusion length to the electrode as the thickness increases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700