用户名: 密码: 验证码:
Cation uptake and allocation by red pine seedlings under cation-nutrient stress in a column growth experiment
详细信息    查看全文
  • 作者:Zhenqing Shi (1) (2)
    Zsuzsanna Balogh-Brunstad (3)
    Michael Grant (2)
    James Harsh (2)
    Richard Gill (4)
    Linda Thomashow (5)
    Alice Dohnalkova (6)
    Daryl Stacks (1)
    Melissa Letourneau (2)
    C. Kent Keller (1)
  • 关键词:Cation ; nutrient stress ; Environmental tracer ; Plant fractionation ; Discrimination factor ; Mineral weathering
  • 刊名:Plant and Soil
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:378
  • 期:1-2
  • 页码:83-98
  • 全文大小:792 KB
  • 参考文献:1. Augusto L, Turpault MP, Ranger J (2000) Impact of forest tree species on feldspar weathering rates. Geoderma 96(3):215鈥?37. doi:10.1016/s0016-7061(00)00021-5 CrossRef
    2. Bakker MR, George E, Turpault MP, Zhang JL, Zeller B (2004) Impact of Douglas-fir and Scots pine seedlings on plagioclase weathering under acidic conditions. Plant Soil 266(1鈥?):247鈥?59
    3. Baligar VC (1985) Potassium uptake by plants, as characterized by root density, species and K/Rb ratio. Plant Soil 85(1):43鈥?3. doi:10.1007/bf02197799 CrossRef
    4. Balogh-Brunstad Z, Keller CK, Bormann BT, O鈥橞rien R, Wang D, Hawley G (2008a) Chemical weathering and chemical denudation dynamics through ecosystem development and disturbance. Global Biogeochem Cy 22(1):Gb1007. doi:10.1029/2007gb002957 CrossRef
    5. Balogh-Brunstad Z, Keller CK, Gill RA, Bormann BT, Li CY (2008b) The effect of bacteria and fungi on chemical weathering and chemical denudation fluxes in pine growth experiments. Biogeochem 88(2):153鈥?67. doi:10.1007/s10533-008-9202-y CrossRef
    6. Beauregard F, Cote B (2008) Test of soil extractants for their suitability in predicting Ca/Sr ratios in leaves and stems of sugar maple seedlings. Biogeochem 88(2):195鈥?03. doi:10.1007/s10533-008-9208-5 CrossRef
    7. Blum A, Lasaga A (1988) Role of surface speciation in the low-temperature dissolution of minerals. Nature 331(6155):431鈥?33 CrossRef
    8. Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417(6890):729鈥?31. doi:10.1038/nature00793 CrossRef
    9. Blum JD, Dasch AA, Hamburg SP, Yanai RD, Arthur MA (2008) Use of foliar Ca/Sr discrimination and (87)Sr/(86)Sr ratios to determine soil Ca sources to sugar maple foliage in a northern hardwood forest. Biogeochem 87(3):287鈥?96. doi:10.1007/s10533-008-9184-9 CrossRef
    10. Blum JD, Hamburg SP, Yanai RD, Arthur MA (2012) Determination of foliar Ca/Sr discrimination factors for six tree species and implications for Ca sources in northern hardwood forests. Plant Soil 356(1鈥?):303鈥?14. doi:10.1007/s11104-011-1122-2 CrossRef
    11. Bullen TD, Bailey SW (2005) Identifying calcium sources at an acid deposition-impacted spruce forest: a strontium isotope, alkaline earth element multi-tracer approach. Biogeochem 74(1):63鈥?9. doi:10.1007/s10533-004-2619-z CrossRef
    12. Clarkson DT (1984) Calcium-transport between tissues and its distribution in the plant. Plant Cell Environ 7(6):449鈥?56. doi:10.1111/j.1365-3040.1984.tb01435.x CrossRef
    13. Dasch AA, Blum JD, Eagar C, Fahey TJ, Driscoll CT, Siccama TG (2006) The relative uptake of Ca and Sr into tree foliage using a whole-watershed calcium addition. Biogeochem 80(1):21鈥?1. doi:10.1007/s10533-005-6008-z CrossRef
    14. Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. John Wiley & Sons, Inc, New York
    15. Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Ac 58(10):2325鈥?332. doi:10.1016/0016-7037(94)90013-2 CrossRef
    16. Drever JI (1997) The geochemistry of natural waters: Surface and groundwater envrionments. 3rd edn. Prentice Hall
    17. Drobner U, Tyler G (1998) Conditions controlling relative uptake of potassium and rubidium by plants from soils. Plant Soil 201(2):285鈥?93. doi:10.1023/a:1004319803952 CrossRef
    18. Drouet T, Herbauts J (2008) Evaluation of the mobility and discrimination of Ca, Sr and Ba in forest ecosystems: consequence on the use of alkaline-earth element ratios as tracers of Ca. Plant Soil 302(1鈥?):105鈥?24. doi:10.1007/s11104-007-9459-2 CrossRef
    19. Ericsson T (1995) Growth and shoot鈥攔oot ratio of seedlings in relation to nutrient availability. Plant Soil 168:205鈥?14. doi:10.1007/bf00029330 CrossRef
    20. Federer CA, Hornbeck JW, Tritton LM, Martin CW, Pierce RS, Smith CT (1989) Long-term depletion of calcium and other nutrients in eastern-United-States forests. Environ Manage 13(5):593鈥?01. doi:10.1007/bf01874965 CrossRef
    21. Fink S (1991) Structural-changes in conifer needles due to Mg-deficiency and K-deficiency. Fert Res 27(1):23鈥?7. doi:10.1007/bf01048605 CrossRef
    22. Ingestad T (1979) Mineral Nutrient Requirements of / Pinus sill鈥檈stris and / Picea abies seedlings. Physio Plant 45:373鈥?80 CrossRef
    23. Kelly EF, Chadwick OA, Hilinski TE (1998) The effect of plants on mineral weathering. Biogeochem 42(1鈥?):21鈥?3. doi:10.1023/a:1005919306687 CrossRef
    24. Koide RT, Kabir Z (2001) Nutrient economy of red pine is affected by interactions between Pisolithus tinctorius and other forest-floor microbes. New Phytol 150(1):179鈥?88. doi:10.1046/j.1469-8137.2001.00073.x CrossRef
    25. Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Ryan DF, Fahey T, Reiners WA (1994) The biogeochemistry of potassium at Hubbard Brook. Biogeochem 25(2):61鈥?25 CrossRef
    26. Likens GE, Driscoll CT, Buso DC, Siccama TG, Johnson CE, Lovett GM, Fahey TJ, Reiners WA, Ryan DF, Martin CW, Bailey SW (1998) The biogeochemistry of calcium at Hubbard Brook. Biogeochem 41(2):89鈥?73. doi:10.1023/a:1005984620681 CrossRef
    27. Lucash MS, Yanai RD, Blum JD, Park BB (2012) Foliar nutrient concentrations related to soil sources across a range of sites in the Northeastern United States. Soil Sci Soc Am J 76(2):674鈥?83. doi:10.2136/sssaj2011.0160 CrossRef
    28. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London
    29. Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255鈥?263. doi:10.1093/jxb/47.Special_Issue.1255 CrossRef
    30. Perry DA, Oren R, Hart SC (2008) Forest Ecosystems, 2nd edn. The Johns Hopkins University Press, Baltimore
    31. Plank (1992) Plant analysis reference procedures for the southern region of the United States http://www.cropsoil.uga.edu/~oplank/sera368.pdf. Accessed August 31, 2013
    32. Poszwa A, Dambrine E, Pollier B, Atteia O (2000) A comparison between Ca and Sr cycling in forest ecosystems. Plant Soil 225(1鈥?):299鈥?10. doi:10.1023/a:1026570812307 CrossRef
    33. Price JR, Hardy CR, Tefend KS, Szymanski DW (2012) Solute geochemical mass-balances and mineral weathering rates in small watersheds II: Biomass nutrient uptake, more equations in more unknowns, and land use/land cover effects. Appl Geochem 27(6):1247鈥?265. doi:10.1016/j.apgeochem.2012.01.020 CrossRef
    34. Rantanen L, Palomaki V, Harrison AF, Lucas PW, Mansfield TA (1994) Interactions between combined exposure to SO2 and NO2 and nutrient status of trees鈥攅ffects on nutrient content and uptake, growth, needle ultrastructure and pigments. New Phytol 128(4):689鈥?01. doi:10.1111/j.1469-8137.1994.tb04033.x CrossRef
    35. Reddy ASN (2001) Calcium: silver bullet in signaling. Plant Sci 160(3):381鈥?04. doi:10.1016/s0168-9452(00)00386-1 CrossRef
    36. Semhi K, Clauer N, Chaudhuri S (2012) Variable element transfers from an illite-rich substrate to growing plants during a three-month experiment. Appl Clay Sci 57:17鈥?4. doi:10.1016/j.clay.2011.12.002 CrossRef
    37. Tyler G (1983) Rubidium鈥攁vailability and plant uptake in natural soils. Commun Soil Sci Plan 14(11):1075鈥?089. doi:10.1080/00103628309367433 CrossRef
    38. Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378鈥?87. doi:10.1016/j.tim.2009.05.004 CrossRef
    39. Van Scholl L, Smits MM, Hoffland E (2006) Ectomycorrhizal weathering of the soil minerals muscovite and hornblende. New Phytol 171(4):805鈥?14. doi:10.1111/j.1469-8137.2006.01790.x CrossRef
    40. White AF, Schulz MS, Vivit DV, Bullen TD, Fitzpatrick J (2012) The impact of biotic/abiotic interfaces in mineral nutrient cycling: A study of soils of the Santa Cruz chronosequence, California. Geochim Cosmochim Ac 77:62鈥?5. doi:10.1016/j.gca.2011.10.029 CrossRef
    41. Witter E, Johansson G (2001) Potassium uptake from the subsoil by green manure crops. Biol Agric Hortic 19(2):127鈥?41 CrossRef
  • 作者单位:Zhenqing Shi (1) (2)
    Zsuzsanna Balogh-Brunstad (3)
    Michael Grant (2)
    James Harsh (2)
    Richard Gill (4)
    Linda Thomashow (5)
    Alice Dohnalkova (6)
    Daryl Stacks (1)
    Melissa Letourneau (2)
    C. Kent Keller (1)

    1. School of the Environment, Washington State University, Pullman, WA, USA
    2. Department of Crop & Soil Sciences, Washington State University, Pullman, WA, USA
    3. Departments of Chemistry & Geology and Environmental Sciences, Hartwick College, Oneonta, NY, USA
    4. Department of Biology, Brigham Young University, Provo, UT, USA
    5. USDA-ARS, Root Disease and Biological Control Research Unit, Washington State University, Pullman, WA, USA
    6. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
  • ISSN:1573-5036
文摘
Background and aims Plant nutrient uptake is affected by environmental stress, but how plants respond to cation-nutrient stress is poorly understood. We assessed the impact of varying degrees of cation-nutrient stress on cation uptake in an experimental plant-mineral system. Methods Column experiments, with red pine (Pinus resinosa Ait.) seedlings growing in sand/mineral mixtures, were conducted for up to 9 months. The Ca and K were supplied from both minerals and nutrient solutions with varying Ca and K concentrations. Results Cation nutrient stress had little impact on carbon allocation after 9 months of plant growth and K was the limiting nutrient for biomass production. Measurement of Ca/Sr and K/Rb ratios allowed independent estimation of dissolution incongruency and discrimination against Sr and Rb during cation uptake processes. The fraction of K in biomass from biotite increased with decreasing K supply from nutrient solutions. The mineral anorthite was consistently the major source of Ca, regardless of nutrient treatment. Conclusions Red pine seedlings exploited more mineral K in response to more severe K deficiency. This did not occur for Ca since Ca was not limiting plant growth. Plant discrimination factors must be carefully considered to accurately identify nutrient sources using cation tracers.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700