用户名: 密码: 验证码:
Assessing antenna field of view and receiver clocks of COSMIC and GRACE satellites: lessons for COSMIC-2
详细信息    查看全文
  • 作者:Tzu-Pang Tseng (1) (3)
    Kefei Zhang (3)
    Cheinway Hwang (2)
    Urs Hugentobler (4)
    Chuan-Sheng Wang (3)
    Suelynn Choy (3)
    Yi-Shan Li (2)
  • 关键词:Clock stability ; COSMIC ; Field of view ; GPS ; Precise orbit determination
  • 刊名:GPS Solutions
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:18
  • 期:2
  • 页码:219-230
  • 全文大小:3,435 KB
  • 参考文献:1. Allan DW (1987) Time and frequency (time-domain) characterization, estimation, and prediction of precision clock and oscillators. IEEE Trans Ultrason Ferroelect Freq Contr, vol.uffc-34(6)
    2. Bettadpur S (2012) GRACE Product Specification Document, Rev. 4.6. Technical Report GRACE 327-720 (CSR-GR-03-02), Center for Space Research, The University of Texas at Austin
    3. Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32:L13806. doi:10.1029/2005GLo23109 CrossRef
    4. Bock H, J?ggi A, Meyer U, Dach R, Beutler G (2011) Impact of GPS antenna phase center variations on precise orbits of the GOCE satellite. Adv Space Res 47(11):1885-893. doi:10.1016/j.asr.2011.01.017 CrossRef
    5. Dach R, Schildknecht T, Hugentobler U, Bernier L-G, Dudle G (2006) Continuous geodetic time transfer analysis methods. IEEE Trans Ultrason Ferroelect Freq Contr 53:1250-259 CrossRef
    6. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software—Version 5.0, Astronomical Institute. University of Bern, Switzerland
    7. Delporte J, Mercier F, Laurichesse D, Galy O (2008) GPS carrier-phase time transfer using single-difference integer ambiguity resolution. Int J Navig Obs. doi:10.1155/2008/273785
    8. Esterhuizen S, Franklin G, Hurst K, Mannucci A, Meehan T, Webb F, Young L (2009) TriG—A GNSS precise orbit and radio occultation space receiver. 22nd International meeting of the satellite division of the institute of navigation, Savannah, GA, September 22-25, page(s):1442-446
    9. Fong CJ, Yang SK, Chu CH, Huang CY, Yeh JJ, Lin CT, Kuo TC, Liu TY, Yen NL, Chen SS, Kuo YH, Liou YA, Chi S (2008) FORMOSAT-3/COSMIC constellation spacecraft system performance: after 1?year in orbit. IEEE Trans Geosci Remote Sens 46:3380-394 CrossRef
    10. Fong CJ, Whiteley D, Yang E, Cook K, Chu V, Schreiner B, Ector D, Wilczynski P, Liu TY, Yen N (2011) Space and ground segment performance and lessons learned of the FORMOSAT-3/COSMIC mission: 4?years in orbit. Atmos Meas Tech 4:1115-132. doi:10.5194/amt-4-1115-2011 CrossRef
    11. Galleani L (2008) Detection of changes in clock noise using the time-frequency spectrum. Metrologia 45:S143–S153. doi:10.1088/0026-1394/45/6/S20 CrossRef
    12. Hofmann-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice. Springer Wien New York, ISBN 3-211-83472-9
    13. Hwang C, Tseng TP, Lin T, ?vehla D, Schreiner B (2009) Precise orbit determination for the FORMOSAT-3/COSMIC satellite mission GPS. J Geod 83:477-89. doi:10.1007/s00190-008-0256-3 CrossRef
    14. Hwang C, Tseng TP, Lin T, ?vehla D, Hugentobler U, Chao BF (2010) Quality assessment of FORMOSAT-3/COSMIC and GRACE GPS observables: analysis of multipath, ionospheric delay and phase residual in orbit determination. GPS Solut 14(1):121-31. doi:10.1007/s10291-009-0145-0 CrossRef
    15. J?ggi A, Hugentobler U, Bock H, Beutler G (2007) Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data. Adv Space Res 39(10):1612-619. doi:10.1016/j.asr.2007.03.012 CrossRef
    16. J?ggi A, Dach R, Montenbruck O, Hugentobler U, Bock H, Beulter G (2009) Phase center modeling for LEO GPS receiver antenna and its impact on precise orbit determination. J Geod 83:1145-162. doi:10.1007/s00190-009-0333-2 CrossRef
    17. Kedar S, Hajj GA, Wilson BD, Heflin MB (2003) The effect of the second order GPS ionospheric correction on receiver positions. Geophys Res Lett 30(16):1829. doi:10.1029/2003GL017639 CrossRef
    18. Kuang D, Bertiger W, Desai S, Haines B, Iijima B, Meehan T (2008) Precise orbit determination for COSMIC Satellites using GPS data from two on-board Antennas. Proceedings of the IEEE/ION PLANS, pp 720-30, May 6-, Monterey, California
    19. Montenbruck O, Garcia-Fernandez M, Williams J (2006) Performance comparison of semicodeless GPS receivers for LEO satellites. GPS Solut 10:249-61. doi:10.1007/s10291-006-0025-9 CrossRef
    20. Montenbruck O, Garcia-Fernandez M, Yoon Y, Sch?n S, J?ggi A (2009) Antenna phase center calibration for precise positioning of LEO satellites. GPS Solut 13:23-4. doi:10.1007/s10291-008-0094-z CrossRef
    21. Riley WJ (2003) Techniques for frequency stability analysis. IEEE International Frequency Control Symposium, Tampa, FL, May 4
    22. Schreiner W, Rocken C, Sokolovskiy S, Hunt D (2010) Quality assessment of COSMIC/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing. GPS Solut 14:13-2. doi:10.1007/s10291-009-0132-5 CrossRef
    23. ?vehla D, Rothacher M (2003) Kinematic and reduced–dynamic precise orbit determination of low earth orbiters. Adv Geosci 1:47-6 CrossRef
    24. Tseng TP, Hwang C, Yang SK (2012) Assessing attitude error of FORMOSAT-3/COSMIC satellites and its impact on orbit determination. Adv Space Res 49(9):1301-312. doi:10.1016/j.asr.2012.02.007 CrossRef
    25. Yeh TK, Hwang C, Xu G, Wang CS, Lee CC (2009) Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy. Meas Sci Technol 20(7):1-. doi:10.1088/0957-0233/20/7/075105 CrossRef
    26. Yeh TK, Chen CH, Xu G, Wang SC, Chen KH (2012) The impact on the positioning accuracy of the frequency reference of a GPS receiver. Surv Geophys. doi:10.1007/s10712-012-9202-2
  • 作者单位:Tzu-Pang Tseng (1) (3)
    Kefei Zhang (3)
    Cheinway Hwang (2)
    Urs Hugentobler (4)
    Chuan-Sheng Wang (3)
    Suelynn Choy (3)
    Yi-Shan Li (2)

    1. GPS Science and Application Research Center, National Central University, 300 Jhongda Road, Jhongli City, 32001, Taiwan
    3. SPACE Research Centre, Royal Melbourne Institute of Technology (RMIT) University, 394-412 Swanston Street, Melbourne, 3001, Australia
    2. Department of Civil Engineering, National Chiao Tung University, 1001 University Road, Hsinchu, 300, Taiwan
    4. Institut für Astronomische und Physikalische Geod?sie, Technische Universit?t München, Arcisstr. 21, 80333, Munich, Germany
  • ISSN:1521-1886
文摘
We provide suggestions for the approved COSMIC-2 satellite mission regarding the field of view (FOV) and the clock stability of its future GNSS receiver based on numerical analyses using COSMIC GPS data. While the GRACE GPS receiver is mounted on the zenith direction, the precise orbit determination (POD) antennas of COSMIC are not. The COSMIC antenna design results in a narrow FOV and a reduction in the number of GPS observations. To strengthen the GPS geometry, GPS data from two POD antennas of COSMIC are used to estimate its orbits. The phase residuals of COSMIC are at the centimeter level, compared to the millimeter level of GRACE. The receiver clock corrections of COSMIC and GRACE are at the microsecond and nanosecond levels, respectively. The clock spectra of COSMIC at the frequencies of 0-.005?Hz contain significant powers, indicating potential systematic errors in its clock corrections. The clock stability, expressed by the Allan deviation, of COSMIC ranges from 10? to 10?1 over 1 to 104 s, compared to 10?2 to 10?4 for GRACE. Compared to USO-based clock of GRACE, the clock of COSMIC is degraded in its stability and is linked to the reduction of GPS data quality. Lessons for improvement of COSMIC-2 over COSMIC in FOV and receiver clock stability are given.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700