用户名: 密码: 验证码:
Promotion of Activity and Thermal Stability of Chloroperoxidase by Trace Amount of Metal Ions (M2+/M3+)
详细信息    查看全文
  • 作者:Haiyun Li (2)
    Jinwei Gao (2)
    Limin Wang (2)
    Xiaohong Li (2)
    Yucheng Jiang (1) (2)
    Mancheng Hu (1) (2)
    Shuni Li (1) (2)
    Quanguo Zhai (1) (2)
  • 关键词:Chloroperoxidase ; Metal ions ; Enhancement of activity ; Activation mechanism
  • 刊名:Applied Biochemistry and Biotechnology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:172
  • 期:5
  • 页码:2338-2347
  • 全文大小:1,118 KB
  • 参考文献:1. Sundaramoorthy, M., Terner, J., & Poulosl, T. L. (1995). The crystal structure of chloroperoxidase: a heme peroxidase–cytochrome P450 functional hybrid. / Structure, 3, 1367-377. CrossRef
    2. Dawson, J. H., & Sono, M. (1987). Cytochrome P-450 and chloroperoxidase: thiolate-ligated heme enzymes. Spectroscopic determination of their active site structures and mechanistic implications of thiolate ligation. / Chemical Reviews, 87, 1255-276. CrossRef
    3. Aburto, J., Correa-Basurto, J., & Torres, E. (2008). Atypical kinetic behavior of chloroperoxidase-mediated oxidative halogenation of polycyclic aromatic hydrocarbons. / Archives of Biochemistry and Biophysics, 480, 33-0. CrossRef
    4. Osborne, R. L., Raner, G. M., Hager, L. P., & Dawson, J. H. (2006). / C. fumago chloroperoxidase is also a dehaloperoxidase: oxidative dehalogenation of halophenols. / Journal of the American Chemical Society, 128, 1036-037. CrossRef
    5. Hoog, H. M., Nallani, M., Cornelissen, J. J. L. M., Rowan, A. E., Nolte, R., & Arends, I. W. C. E. (2009). Biocatalytic oxidation by chloroperoxidase from / Caldariomyces fumago in polymersome nanoreactors. / Organic & Biomolecular Chemistry, 7, 4604-610. CrossRef
    6. Zhu, G., & Wang, P. (2005). Novel interface-binding chloroperoxidase for interfacial epoxidation of styrene. / Journal of Biotechnology, 117, 195-02. CrossRef
    7. Allenmark, S. G., & Malin, A. (1996). Chloroperoxidase-catalyzed asymmetric synthesis of a series of aromatic cyclic sulfoxides. / Tetrahedron: Asymmetry, 7, 1089-094. CrossRef
    8. Wang, W., Xu, Y., Wang, D. I. C., & Li, Z. (2009). Recyclable nanobiocatalyst for enantioselective sulfoxidation: facile fabrication and high performance of chloroperoxidase-coated magnetic nanoparticles with iron oxide core and polymer shell. / Journal of the American Chemical Society, 131, 12892-2893. CrossRef
    9. Bayramo?lu, G., Kiralp, S., Yilmaz, M., Toppare, L., & Ar?ca, M. Y. (2008). Covalent immobilization of chloroperoxidase onto magnetic beads: catalytic properties and stability. / Biochemical Engineering Journal, 38, 180-88. CrossRef
    10. Jung, D., Paradiso, M., Wallacher, D., Brandt, A., & Hartmann, M. (2009). Formation of cross-linked chloroperoxidase aggregates in the pores of mesocellular foams: characterization by SANS and catalytic properties. / ChemSusChem, 2, 161-64. CrossRef
    11. Montiel, C., Terrés, E., Domínguez, J.-M., & Aburto, J. (2007). Immobilization of chloroperoxidase on silica-based materials for 4,6-dimethyl dibenzothiophene oxidation. / Journal of Molecular Catalysis B: Enzymatic, 48, 90-8. CrossRef
    12. Velde, F., Bakker, M., Rantwijk, F., Rai, G. P., Hager, L. P., & Sheldon, R. A. (2001). Engineering chloroperoxidase for activity and stability. / Journal of Molecular Catalysis B: Enzymatic, 11, 765-69. CrossRef
    13. Rai, G. P., Sakai, S., Flórez, A. M., Mogollon, L., & Hager, L. P. (2001). Directed evolution of chloroperoxidase for improved epoxidation and chlorination catalysis. / Advanced Synthesis & Catalysis, 343, 638-45. CrossRef
    14. Yi, X., Conesa, A., Punt, P. J., & Hager, L. P. (2003). Examining the role of glutamic acid 183 in chloroperoxidase catalysis. / Journal of Biological Chemistry, 278, 13855-3859. CrossRef
    15. Lichtenecker, R. J., & Schmid, W. (2009). Application of various ionic liquids as cosolvents for chloroperoxidase-catalysed biotransformations. / Monatshefte für Chemie, 140, 509-12. CrossRef
    16. Park, J. B., & Clark, D. S. (2006). New reaction system for hydrocarbon oxidation by chloroperoxidase. / Biotechnology and Bioengineering, 94, 189-92. CrossRef
    17. Ru, X., Wu, J., Guo, H., Jiang, Y., Hu, M., Zhai, Q., et al. (2010). The improvement of chloroperoxidase activities in the presence of ammonium salts and cationic surfactants. / Biotechnology Progress, 26, 1024-028.
    18. Bai, C., Jiang, Y., Hu, M., Li, S., & Zhai, Q. (2009). Improvement of chloroperoxidase catalytic activities by chitosan and thioglycolic acid. / Catalysis Letters, 129, 457-61. CrossRef
    19. Zhi, L., Jiang, Y., Wang, Y., Hu, M., Li, S., & Ma, Y. (2007). Effects of additives on the thermostability of chloroperoxidase. / Biotechnology Progress, 23, 729-33. CrossRef
    20. Li, C., Wang, L., Jiang, Y., Hu, M., Li, S., & Zhai, Q. (2011). Activity and stability of chloroperoxidase in the presence of small quantities of polysaccharides: a catalytically favorable conformation was induced. / Applied Biochemistry and Biotechnology, 165, 1691-707. CrossRef
    21. Gao, Q., Jiang, Y., Gao, X., Hu, M., Li, S., & Zhai, Q. (2009). Activation function of chloroperoxidase in the presence of metal ions at elevated temperature from 25 to 55?°C. / Chinese Journal of Chemistry, 27, 1291-294. CrossRef
    22. Morris, D. R., & Hager, L. P. (1966). Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. / Journal of Biological Chemistry, 241, 1763-768.
    23. Hager, L. P., Morris, D. R., Brown, F. S., & Eberwein, H. (1966). Chloroperoxidase. II. Utilization of halogen anions. / Journal of Biological Chemistry, 241, 1769-777.
    24. Manoj, K. M., & Hager, L. P. (2005). A colorimetric method for detection and quantification of chlorinating activity of hemeperoxidases. / Analytical Biochemistry, 348, 84-6. CrossRef
    25. Manoj, K. M. (2006). Chlorinations catalyzed by chloroperoxidase occur via diffusible intermediate(s) and the reaction components play multiple roles in the overall process. / Biochimica et Biophysica Acta, 1764, 1325-339. CrossRef
    26. Aburto, J., Ayala, M., Bustos-Jaimes, I., Montiel, C., Terrés, E., Domínguez, J. M., et al. (2005). Stability and catalytic properties of chloroperoxidase immobilized on SBA-16 mesoporous materials. / Microporous and Mesoporous Materials, 83, 193-00. CrossRef
  • 作者单位:Haiyun Li (2)
    Jinwei Gao (2)
    Limin Wang (2)
    Xiaohong Li (2)
    Yucheng Jiang (1) (2)
    Mancheng Hu (1) (2)
    Shuni Li (1) (2)
    Quanguo Zhai (1) (2)

    2. School of Chemistry and Chemical Engineering, Shaanxi Normal University, Chang’an South Road, 199, Xi’an, Shaanxi, 710062, People’s Republic of China
    1. Key Laboratory of Macromolecular Science of Shaanxi Province, Shaanxi Normal University, Xi’an, People’s Republic of China
  • ISSN:1559-0291
文摘
The effect of M2+ (Zn2+, Cu2+, Cd2+, Mn2+, Pb2+) and M3+ (Cr3+, La3+, Fe3+, Ce3+, Y3+, Al3+) metal ions on the activity and thermal stability of chloroperoxidase (CPO) was investigated in this work. It was found that the lower concentration of metal ions was favorable to CPO activity whereas the higher concentration reversed the results. CPO activity could be increased to 116.4-27.1?% in the presence of a trace amount of these M2+/M3+ metal ions at a concentration range of 0-5?μmol?L? after 2?h of incubation at 25?°C. The activating effect of M3+ is better than that of M2+, and Cr3+ was mostly efficient. The thermal stability of the enzyme was also improved significantly. Only 30.3?% of CPO activity was retained at 50?°C whereas 82.6?% of CPO activity was maintained in the presence of Cr3+ after 2?h of incubation at the same temperature. The activation of CPO by metal ions at their low concentration was studied through intrinsic fluorescence, circular dichroism (CD), and UV–Vis spectra assay. A favorable environment around the active site was achieved in the presence of metal ions. Intrinsic fluorescence and CD spectra indicated that the α-helix structure of CPO was strengthened in metal ion-contained media. More exposure of the heme ring was achieved for easy access of the substrate, which was suggested by UV–Vis spectrum analysis. This strategy for enhancing CPO activity is very simple and useful. It will be favorable to the practical application of this enzyme.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700