用户名: 密码: 验证码:
Non-platinum Carbon-Supported Oxygen Reduction Catalyst Ink Evaluation Based on Poly(sulfone) and Poly(phenylene)-Derived Ionomers in Alkaline Media
详细信息    查看全文
  • 作者:Michael H. Robson (1)
    Kateryna Artyushkova (1)
    Wendy Patterson (1)
    Plamen Atanassov (1)
    Michael R. Hibbs (2)
  • 关键词:AFC ; Cyanamide ; Non ; PGM electrocatalysts ; Ionomers
  • 刊名:Electrocatalysis
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:5
  • 期:2
  • 页码:148-158
  • 全文大小:1,162 KB
  • 参考文献:1. A. Damjanovic, V. Brusic, Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochemical Acta 12(6), 615-28 (1967) CrossRef
    2. J.R. Varcoe, R.C.T. Slade, G.L. Wright, Y. Chen, Steady-state dc and impedance investigations of H2/O2 alkaline membrane fuel cells with commercial Pt/C, Ag/C, and Au/C cathodes. J. Phys. Chem. B 110(42), 21041-1049 (2006) CrossRef
    3. Y. Wang, L. Li, L. Zhuang, L. Juntao, X. Boqing, A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem. Commun. 5(8), 662-66 (2003) CrossRef
    4. J.R. Varcoe, R.C.T. Slade, Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2), 187-00 (2005) CrossRef
    5. D. J. Connolly, and W Franklin-Gresham. Fluorocarbon vinyl ether polymers. United States Patent 3282875. November 1, (1966)
    6. R.S. Yeo, J. McBreen, Transport properties of Nafion membranes in electrochemically regenerative hydrogen/halogen cells. J. Electrochem. Soc. 126(10), 1682-687 (1979) CrossRef
    7. C. Heitner-Wirguin, Recent advances in perfluorinated ionomer membranes: structure, properties, and applications. J. Membr. Sci. 120(1), 1-3 (1996) CrossRef
    8. R. Jasinski, A new fuel cell cathode catalyst. Nature 201, 1212-213 (1964) CrossRef
    9. F. Jaouen et al., Cross-laboratory experimental study of non-noble-metal electrocatalysts for oxygen reduction reaction. ACS Applied Material & Interfaces 1(8), 1623-639 (2009) CrossRef
    10. S. Pylyplenko, S. Mukerjee, T. Olson, P. Atanassov, Non-platinum oxygen reduction electrocatalysts based on pyrolyzed transition metal macrocycles. Electrochemical Acta 53, 7875-883 (2008) CrossRef
    11. S.L. Gojkovic, S. Gupta, R.F. Savinell, Heat-treated iron(III) tetramethoxyphenyl porphyrin supported on high-area carbon as an electrocatalyst for oxygen reduction-I. Characterization of the electrocatalyst. J. Electrochem. Soc. 145, 3493-499 (1998) CrossRef
    12. P. Gouerec, M. Savy, Oxygen reduction electrocatalysis: ageing of pyrolyzed cobalt macrocycles dispersed on an active carbon. Electrochemical Acta 44, 2653-661 (1999) CrossRef
    13. K. Kinoshita, / Carbon: Electrochemical and Physicochemical Properties (Wiley, New York, 1988)
    14. S.M. Haile, Fuel cell materials and components. Acta Mater. 51, 5981-000 (2003) CrossRef
    15. R.H. Ottewill, J.N. Shaw, Stability of monodisperse polystyrene latex dispersions of various sizes. Discuss of the Faraday Soc. 42, 154-63 (1966) CrossRef
    16. M.R. Hibbs, M.A. Hickner, T.M. Alam, S.K. McIntyre, C.H. Fujimoto, C.J. Cornelius, Transport Properties of hydroxide and proton conducting membranes. Chem. Mater. 20(7), 2566 (2008) CrossRef
    17. Y. Xiong, J. Fang, Q.H. Zeng, L.L. Qing, Preparation and characterization of cross-linked quaternized poly(vinyl alcohol) membranes for anion exchange membrane fuel cells. J. Membr. Sci. 311(1-), 319-25 (2008) CrossRef
    18. G. Wang, Y. Weng, C. Deryn, D. Xie, R. Chen, Preparation of alkaline anion exchange membranes based on functional poly(ether-imide) polymers for potential fuel cell applications. J. Membr. Sci. 326(1), 4- (2009) CrossRef
    19. M.R. Hibbs, C.H. Fujimoto, C.J. Cornelius, Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42, 8316-321 (2009) CrossRef
    20. M. Hibbs, Christopher J. Cornelius, and C. H. Fujimoto. Poly(phenylene)-based anion exchange membrane. USA Patent 7888397. February 15, (2011)
    21. L. Wu, T. Xu, Improving anion exchange membranes for DMAFCs by inter-crosslinking CPPO/BPPO blends. J. Membr. Sci. 322(2), 286-92 (2008) CrossRef
    22. E.E. Switzer, T. Olson, A.K. Datye, P. Atanassov, M. Hibbs, C.J. Cornelius, Templated Pt–Sn electrocatalysts for ethanol, methanol and CO oxidation in alkaline media. Electrochemical Acta 54(3), 989-95 (2009) CrossRef
    23. S. Litster, G. McLean, PEM fuel cell electrodes. J. Power Sources 130, 61-6 (2004) CrossRef
    24. S. Srinvasan, O. A. Velev, A. Parthasarathy, D. J. Manko, and A. J. Appleby. High energy efficiency and high power density proton exchange membrane fuel cells-electrode kinetics and mass transport. J Power Source 36(1), 299-20
    25. T. Hatanaka, N. Hasegawa, A. Kamiya, M. Kawasumi, Y. Morimoto, K. Kawahara, Cell performances of direct methanol fuel cells with grafted membranes. Fuel 81, 2173-176 (2002) CrossRef
    26. J.P. Meyers, R.M. Darling, Model of carbon corrosion in PEM fuel cells. J. Electrochem. Soc. 152(8), A1432–A1442 (2006) CrossRef
    27. H.T. Chung, C.M. Johnston, K. Artyushkova, M. Ferrandon, D.J. Myers, P. Zelenay, Cyanamide-derived non-precious metal catalyst for oxygen reduction. Electrochem. Commun. 12, 1792-795 (2010) CrossRef
    28. N.J. Carroll, S. Pylyplenko, P. Atanassov, N.D. Petsev, Hierarchical nano-porous microparticles derived by microemulsion templating. Langmuir 25(23), 13540-3544 (2009) CrossRef
    29. S. Pylyplenko, T. Olson, T. Carroll, D.N. Petsev, P. Atanassov, Templated platinum/carbon oxygen reduction fuel cell electrocatalysts. J. Phys. Chem. C 114, 4200-207 (2010) CrossRef
    30. J. Yan, M.A. Hickner, Anion exchange membranes by bromination of benzylmethyl-containing poly(sulfone)s. Macromolecules 43, 2349-356 (2010) CrossRef
    31. A. Parthasarathy, C.R. Martin, S. Srinivasan, Investigations of the O2 reduction reaction at the platinum/Nafion(R) interface using a solid-state electrochemical cell. J. Electrochem. Soc. 138(4), 916-21 (1991) CrossRef
    32. D. Song, Q. Wang, Z. Liu, T. Navessin, M. Eikerling, S. Holdcroft, Numerical optimization study of the catalyst layer of PEM fuel cell cathode. J. Power Sources 126, 104-11 (2004) CrossRef
    33. A. Ohma, F. Kazuyoshi, K. Okazaki, Influence of Nafion? film on oxygen reduction reaction and hydrogen peroxide formation on Pt electrode for proton exchange membrane fuel cell. Electrochemical Acta 55(28), 8829-838 (2010) CrossRef
    34. F. Jaouen, J.P. Dodelet, Average turn-over frequency of O2 electro-reduction for Fe/N/C and Co/N/C catalysts in PEFCs. Electrochemical Acta 52(19), 5975-984 (2007) CrossRef
    35. A. Bonakdarpour, M. Lefevre, Y. Ruizhi, F. Jaouen, T. Dahn, J.-P. Dodelet, Impact of loading in RRDE experiments on Fe–N–C catalysts: two- or four-electron oxygen reduction? Electrochem. Solid-State Lett. 11(6), B105–B108 (2008) CrossRef
    36. S.L.J. Gojkovi?, Oxygen reduction on iron. Temperature dependence of oxygen reduction on passivated iron in alkaline solutions. J. Electroanal. Chem. 399(1-), 127 (1995) CrossRef
    37. A. Parthasarathy, S. Supramaniam, J. Appleby, Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface—a microelectrode investigation. J. Electrochem. Soc. 139(9), 2530-537 (1992) CrossRef
    38. T. Olson, S. Pylyplenko, P. Atanassov, K. Asazawa, K. Yamada, H. Tanaka, Anion-exchange membrane fuel cells: dual-site mechanism of oxygen reduction reaction in alkaline media on cobalt-polypyrrole electrocatalysts. J. Phys. Chem. C 114, 5049-059 (2010) CrossRef
    39. M.H. Robson, A. Serov, K. Artyushkova, P. Atanassov, A mechanistic study of 4-aminoantipyrine and iron derived non-platinum group metal catalyst on the oxygen reduction reaction. Electrochim. Acta 90, 656-65 (2013) CrossRef
    40. P. Zschocke, D. Quellmalz, Novel ion exchange membranes based on an aromatic polyethersulfone. J. Membr. Sci. 22(2-3), 325-32 (1985) CrossRef
    41. C. Fujimoto, D.-S. Kim, M. Hibbs, D. Wrobleski, Y.S. Kim, J. Memb. Sci. 423-24, 438 (2012) CrossRef
  • 作者单位:Michael H. Robson (1)
    Kateryna Artyushkova (1)
    Wendy Patterson (1)
    Plamen Atanassov (1)
    Michael R. Hibbs (2)

    1. Department of Chemical and Nuclear Engineering, University of New Mexico, 1 University of New Mexico, Albuquerque, NM, 87131-0001, USA
    2. Sandia National Laboratories, P.O. Box 5800, Mailstop 0888, Albuquerque, NM, 87185, USA
  • ISSN:1868-5994
文摘
Described in this work is an electrochemical evaluation of novel alkaline ionomers employed as catalyst binder for non-platinum group metal electrocatalysts based on cyanamide precursor. Electrochemical evaluation of the non-platinum group metal (non-PGM) catalyst bound with the featured alkaline ionomer classes over a range of conditions gives insight into how they behave, as well as provide information on how the varying functionalities enhance or inhibit the rate of oxygen reduction. We are showing that the polymer backbone structure has a larger influence on facilitating favorable reaction kinetics than ionomer to catalysts ratio. The poly(sulfone)-derived ionomers result in a worse activity than electrocatalysts with Nafion? and poly(phenylene)-derived ionomers. They also exhibited more peroxide desorption and greater limitation in the mass transport regime. The poly(phenylene)-derived polymers performed in line with the benchmark ionomer, Nafion?. The poly(phenylene)-derived ionomers show promise as fruitful line of research in establishing an anion-conducting ionomer for alkaline electrolyte fuel cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700