用户名: 密码: 验证码:
Product of exponential model for geometric error integration of multi-axis machine tools
详细信息    查看全文
  • 作者:Guoqiang Fu (1)
    Jianzhong Fu (1)
    Yuetong Xu (1)
    Zichen Chen (1)
  • 关键词:Twist ; The POE model ; Geometric error ; Geometric property ; The topological structure
  • 刊名:The International Journal of Advanced Manufacturing Technology
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:71
  • 期:9-12
  • 页码:1653-1667
  • 全文大小:3,603 KB
  • 参考文献:1. Kiridena VSB, Ferreira PM (1994) Kinematic modeling of quasistatic errors of three-axis machining centers. Int J Mach Tools Manuf 34(1):85鈥?00 CrossRef
    2. Okafor AC, Ertekin YM (2000) Derivation of machine tool error models and error compensation procedure for three axes vertical machining center using rigid body kinematics. Int J Mach Tools Manuf 40(8):1199鈥?213 CrossRef
    3. Lei WT, Hsu YY (2002) Accuracy test of five-axis CNC machine tool with 3D probe鈥揵all. Part I: design and modeling. Int J Mach Tools Manuf 42(10):1153鈥?162 CrossRef
    4. Lei WT, Hsu YY (2002) Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part II: errors estimation. Int J Mach Tools Manuf 42(10):1163鈥?170 CrossRef
    5. Jung JH, Choi JP, Lee SJ (2006) Machining accuracy enhancement by compensating for volumetric errors of a machine tool and on-machine measurement. J Mater Process Technol 174(1鈥?):56鈥?6 CrossRef
    6. Lin Y, Shen Y (2003) Modelling of five-axis machine tool metrology models using the matrix summation approach. Int J Adv Manuf Technol 21(4):243鈥?48 CrossRef
    7. Zhu S, Ding G, Qin S, Lei J, Zhuang L, Yan K (2012) Integrated geometric error modeling, identification and compensation of CNC machine tools. Int J Mach Tools Manuf 52(1):24鈥?9 CrossRef
    8. Fan JW, Guan JL, Wang WC, Luo Q, Zhang XL, Wang LY (2002) A universal modeling method for enhancement the volumetric accuracy of CNC machine tools. J Mater Process Technol 129(1鈥?):624鈥?28 CrossRef
    9. Bohez ELJ, Ariyajunya B, Sinlapeecheewa C, Shein TMM, Lap DT, Belforte G (2007) Systematic geometric rigid body error identification of 5-axis milling machines. Comput Aided Des 39(4):229鈥?44 CrossRef
    10. Chen G, Liang Y, Sun Y, Chen W, Wang B (2013) Volumetric error modeling and sensitivity analysis for designing a five-axis ultra-precision machine tool. Int J Adv Manuf Technol 68(9鈥?2):2525鈥?534 CrossRef
    11. Khan AW, Wuyi C (2010) Systematic geometric error modeling for workspace volumetric calibration of a 5-axis turbine blade grinding machine. Chin J Aeronaut 23(5):604鈥?15 CrossRef
    12. Cui G, Lu Y, Li J, Gao D, Yao Y (2012) Geometric error compensation software system for CNC machine tools based on NC program reconstructing. Int J Adv Manuf Technol 63(1鈥?):169鈥?80 CrossRef
    13. Khan A, Chen W (2011) A methodology for systematic geometric error compensation in five-axis machine tools. Int J Adv Manuf Technol 53(5鈥?):615鈥?28 CrossRef
    14. Lamikiz A, L贸pez de Lacalle LN, Ocerin O, D铆ez D, Maidagan E (2008) The Denavit and Hartenberg approach applied to evaluate the consequences in the tool tip position of geometrical errors in five-axis milling centres. Int J Adv Manuf Technol 37(1鈥?):122鈥?39 CrossRef
    15. Lu Y, Islam MN (2012) A new approach to thermally induced volumetric error compensation. Int J Adv Manuf Technol 62(9鈥?2):1071鈥?085 CrossRef
    16. Chen IM, Yang GL, Tan CT, Yeo SH (2001) Local POE model for robot kinematic calibration. Mech Mach Theory 36(11鈥?2):1215鈥?239 CrossRef
    17. Li Y, Zhu MC, Li YC, Ieee (2006) Kinematics of reconfigurable flexible-manipulator using a local product-of-exponentials formula. WCICA 2006: Sixth World Congress on Intelligent Control and Automation, Vols 1鈥?2, Conference Proceedings. New York: Ieee. 9022鈥?026
    18. He RB, Zhao YJ, Yang SN, Yang SZ (2010) Kinematic-parameter identification for serial-robot calibration based on POE formula. Ieee Trans Robot 26(3):411鈥?23 CrossRef
    19. Tao PY, Yang G, Sun YC, Tomizuka M, Lai CY (2012) Product-of-exponential (POE) model for kinematic calibration of robots with joint compliance. In Advanced Intelligent Mechatronics (AIM), 2012 IEEE/ASME International Conference on
    20. Moon YM (2000) Reconfigurable machine tool design: theory and application, in mechanical engineering. The University of Michigan
    21. Moon SK, Moon YM, Kota S, Landers RG (2001) Screw theory based metrology for design and error compensation of machine tools. In Proceedings of DETC
    22. Yu Z, Tiemin L, Xiaoqiang T (2011) Geometric error modeling of machine tools based on screw theory. Procedia Eng 24:845鈥?49 CrossRef
    23. Tian WJ, He BY, Huang T (2011) Universal geometric error modeling of the CNC machine tools based on the screw theory. In: Xin J, Zhu L, Wang Z (eds) Fourth international seminar on modern cutting and measurement engineering. Spie-Int Soc Optical Engineering, Bellingham
    24. He ZY, Fu JZ, Yao XH (2010) Volumetric error modeling and analysis for CNC machine tool based on multi-body system. Key Eng Mater 426鈥?27:441鈥?46 CrossRef
    25. Zhang G, Ouyang R, Lu B, Hocken R, Veale R, Donmez A (1988) A displacement method for machine geometry calibration. CIRP Ann Manuf Technol 37(1):515鈥?18 CrossRef
    26. Chen G, Yuan J, Ni J (2001) A displacement measurement approach for machine geometric error assessment. Int J Mach Tools Manuf 41(1):149鈥?61 CrossRef
    27. Wang C (2000) Laser vector measurement technique for the determination and compensation of volumetric positioning errors. Part I: basic theory. Rev Sci Instrum 71(10):3933鈥?937 CrossRef
  • 作者单位:Guoqiang Fu (1)
    Jianzhong Fu (1)
    Yuetong Xu (1)
    Zichen Chen (1)

    1. The State Key Lab of Fluid Power Transmission and Control, Department of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
  • ISSN:1433-3015
文摘
This paper proposes a product of exponential (POE) model to integrate the geometric errors of multi-axis machine tools. Firstly, three twists are established to represent the six basic error components of each axis in an original way according to the geometric definition of the errors and twists. The three twists represent the basic errors in x, y, and z directions, respectively. One error POE model is established to integrate the three twists. This error POE formula is homogeneous and can express the geometric meaning of the basic errors, which is precise enough to improve the accuracy of the geometric error model. Secondly, squareness errors are taken into account using POE method to make the POE model of geometric errors more systematic. Two methods are proposed to obtain the POE models of squareness errors according to their geometric properties: The first method bases on the geometric definition of errors to obtain the twists directly; the other method uses the adjoint matrix through coordinate system transformation. Moreover, the topological structure of the machine tools is introduced into the POE method to make the POE model more reasonable and accurate. It can organize the obtained 14 twists and eight POE models of the three-axis machine tools. According to the order of these POE models multiplications, the integrated POE model of geometric errors is established. Finally, the experiments have been conducted on an MV-5A three-axis vertical machining center to verify the model. The results show that the integrated POE model is effective and precise enough. The error field of machine tool is obtained according to the error model, which is significant for the error prediction and compensation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700