用户名: 密码: 验证码:
Characteristics of a ridge-transform inside corner intersection and associated mafic-hosted seafloor hydrothermal field (14.0°S, Mid-Atlantic Ridge)
详细信息    查看全文
  • 作者:Bing Li (1) (2) (3)
    Yaomin Yang (2) (4)
    Xuefa Shi (2)
    Jun Ye (2)
    Jingjing Gao (2)
    Aimei Zhu (2)
    Mingjuan Shao (2) (5)
  • 关键词:Southern Mid ; Atlantic Ridge ; Inside corner hydrothermal activity ; Massive sulfide deposit ; Gabbroic intrusion ; Oceanic core complex
  • 刊名:Marine Geophysical Researches
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:35
  • 期:1
  • 页码:55-68
  • 全文大小:9,904 KB
  • 参考文献:1. Allen DE, Seyfried WE Jr (2004) Serpentinization and heat generation: constraints from lost city and rainbow hydrothermal systems. Geochim Cosmochim Acta 68:1347-354 CrossRef
    2. Augustin N, Lackschewitz K, Kuhn T et al (2008) Mineralogical and chemical mass changes in mafic and ultramafic rocks from the logatchev hydrothermal field (MAR 15?N). Mar Geol 256:18-9 CrossRef
    3. Cann J, Blackman D, Smith D et al (1997) Corrugated slip surfaces formed at ridge-transform intersections on the Mid-Atlantic Ridge. Nature 385:329-32 CrossRef
    4. Charlou J, Donval J, Douville E et al (1997) High methane flux between 15° N and the Azores Triple Junction, Mid-Atlantic Ridge. Hydrothermal and serpentinization processes. American Geophysical Union, Fall meeting: 831
    5. Chen YJ, Lin J (1999) Mechanisms for the formation of ridge-axis topography at slow-spreading ridges: a lithospheric-plate flexural model. Geophys J Int 136:8-8 CrossRef
    6. Dekov V, Boycheva T, H?lenius U et al (2011) Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12° 50-N core complex (Mid-Atlantic Ridge): A new ultramafic-hosted seafloor hydrothermal deposit? Marine Geology 90-02
    7. Dias S, Früh-Green G, Bernasconi S et al (2011) Geochemistry and stable isotope constraints on high-temperature activity from sediment cores of the Saldanha hydrothermal field. Mar Geol 279:128-40 CrossRef
    8. Dick HJB (1989) Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. Geol Soc Lond Special Publ 42:71-05 CrossRef
    9. Dick HJB, Natland JH, Ildefonse B (2006) Deep drilling in the oceanic crustand mantle. Oceanography 19:72-0 CrossRef
    10. Dubinin A (2004) Geochemistry of rare earth elements in the ocean. Lithol Min Resour 39:289-07 CrossRef
    11. Escartin J, Smith DK, Cann J et al (2008) Central role of detachment faults in accretion of slow-spreading oceanic lithosphere. Nature 455:790-94 CrossRef
    12. Fouquet Y, Cambon P, Etoubleau J et al (2010) Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: a new type of oceanic Cu–Zn–Co–Au volcanogenic massive sulfide deposit. Geophys Monogr Ser 188:321-67
    13. Früh-Green GL, Kelley DS, Bernasconi SM et al (2003) 30,000?years of hydrothermal activity at the lost city vent field. Science 301:495-98 CrossRef
    14. German C, Klinkhammer G, Edmond J et al (1990) Hydrothermal scavenging of rare-earth elements in the ocean. Nature 345:516-18 CrossRef
    15. Hannington M, Alan GG, Herzig P Peter M et al (1998) Comparation of the TAG mound and stockwork complex with cyprus-type. Proc Ocean Drill Prog Sci Results 158:389-15
    16. Hannington M, Ronde C and Petersen S (2005) Seafloor tectonics and submarine hydrothermal systems. Economic Geology, Economic Geology 100th Anniversary Volume: 111-41
    17. Humphris SE, Herzig P, Miller D et al (1995) The internal structure of an active sea-floor massive sulfide deposit. Nature 377:713-16 CrossRef
    18. Ildefonse B, Blackman D, John B et al (2007) Oceanic core complexes and crustal accretion at slow-spreading ridges. Geology 35:623-26 CrossRef
    19. Kelley DS, Karson JA (2001) An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30?N. Nature 412:145-49 CrossRef
    20. Lowell RP (2010) Hydrothermal circulation at slow spreading ridges: analysis of heat sources and heat transfer processes. Geophys Monogr Ser 188:11-6
    21. Ludwig KA, Kelley DS, Butterfield DA et al (2006) Formation and evolution of carbonate chimneys at the lost city hydrothermal field. Geochim Cosmochim Acta 70:3625-645 CrossRef
    22. Macdonald KC, Fox PJ (1990) The mid-ocean ridge. Sci Am 262:72-9 CrossRef
    23. Macleod CJ, Escartin J, Banerji D et al (2002) Direct geological evidence for oceanic detachment faulting: the Mid-Atlantic Ridge, 15 45-N. Geology 30:879-82 CrossRef
    24. Mccaig AM, Cliff RA, Escartin J et al (2007) Oceanic detachment faults focus very large volumes of black smoker fluids. Geology 35:935-38 CrossRef
    25. Mccaig AM, Delacour A, Fallick AE et al (2010) Detachment fault control on hydrothermal circulation systems: interpreting the subsurface beneath the TAG hydrothermal field using the isotopic and geological evolution of oceanic core complexes in the Atlantic. Diversity of hydrothermal systems on slow spreading ocean ridges. Geophys Monogr Ser 188:207-40
    26. Mccollom TM, Bach W (2009) Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks. Geochim Cosmochim Acta 73:856-75 CrossRef
    27. Melchert B, Devey CW, German C et al (2008) First evidence for high-temperature off-axis venting of deep crustal/mantle heat: the Nibelungen hydrothermal field, southern Mid-Atlantic Ridge. Earth Planet Sci Lett 275:61-9 CrossRef
    28. Mills RA, Wells DM, Roberts S (2001) Genesis of ferromanganese crusts from the TAG hydrothermal field. Chem Geol 176:283-93 CrossRef
    29. Morgan JW, Wandless GA (1980) Rare earth element distribution in some hydrothermal minerals: evidence for crystallographic control. Geochim Cosmochim Acta 44:973-80 CrossRef
    30. Norman HS et al (2002) Local lithospheric relief associated with fracture zones and ponded plume material. Geochem Geophys Geosys 3:1-7
    31. Olivarez AM, Owen RM (1989) REE/Fe variations in hydrothermal sediments: implications for the REE content of seawater. Geochim Cosmochim Acta 53:757-62 CrossRef
    32. Severinghaus JP, Macdonald KC (1988) High inside corners at ridge-transform intersections. Marine Geophys Res 9:353-67 CrossRef
    33. Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1956-962 CrossRef
    34. Tao et al (2011) Two hydrothermal fields found on the Southern Mid-Atlantic Ridge. Sci China Earth Ser (D) 41:887-89
    35. Tivey MK (2007) Generation of seafloor hydrothermal vent fluids and associated mineral deposits. Oceanography 20:50-5 CrossRef
    36. Tucholke BE, Lin J (1994) A geological model for the structure of ridge segments in slow spreading ocean crust. J Geophys Res 99:11937-1958 CrossRef
    37. Tucholke BE, Lin J, Kleinrock MC (1998) Megamullions and mullion structure defining oceanic metamorphic core complexes on the Mid-Atlantic Ridge. J Geophys Res 103:9857-866 (1978-012) CrossRef
    38. Tucholke BE et al (2001) Submersible study of an oceanic megamullion in the central North Atlantic. J Geophys Res 106:16145-6161 CrossRef
    39. Tucholke BE, Behn MD, Buck WR et al (2008) Role of melt supply in oceanic detachment faulting and formation of megamullions. Geology 36:455-58 CrossRef
    40. Von Damm KL (2001) Lost city found. Nature 412:127-28 CrossRef
    41. Wilcock WSD, Delaney JR (1996) Mid-ocean ridge sulfide deposits: evidence for heat extraction from magma chambers or cracking fronts? Earth Planet Sci Lett 145:49-4 CrossRef
  • 作者单位:Bing Li (1) (2) (3)
    Yaomin Yang (2) (4)
    Xuefa Shi (2)
    Jun Ye (2)
    Jingjing Gao (2)
    Aimei Zhu (2)
    Mingjuan Shao (2) (5)

    1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
    2. First Institute of Oceanography, State Oceanic Administration, Qingdao, 266061, China
    3. University of Chinese Academy of Sciences, Beijing, 100049, China
    4. National Deep Sea Center, State Oceanic Administration, Qingdao, 266061, China
    5. China University of Geosciences, Beijing, 100083, China
  • ISSN:1573-0581
文摘
Morphotectonic analysis of the inside corner intersection (14.0°S) between the southern Mid-Atlantic Ridge and the Cardno fracture zone indicate a young rough massif emerging after the termination of a previous oceanic core complex. The massif, which hosts an off-axis hydrothermal field, is characterized by a magmatic inactive volcanic structure, based on geologic mapping and sample studies. Mineralogical analyses show that the prominent hydrothermal deposit was characterized by massive pyrite-marcasite breccias with silica-rich gangue minerals. Geochemical analyses of the sulfide breccias indicate two element groups: the Fe-rich ore mineral group and silica-rich gangue mineral group. Rare earth element distribution patterns showing coexistence of positive Eu anomalies and negative Ce anomalies suggest that sulfides were precipitated from diffused discharge resulted from mixing between seawater and vent fluids. Different from several low temperature hydrothermal systems occurring on other intersection dome-like massifs that are recognized as detachment fault surfaces associated with variably metamorphosed ultramafic rocks, the 14.0°S field, hosted in gabbroic-basaltic substrate, is inferred to be of a high temperature system and likely to be driven by deep high temperature gabbroic intrusions. Additionally, the subsurface fossil detachment fault is also likely to play an important role in focusing hydrothermal fluids.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700