用户名: 密码: 验证码:
Efficiently Synthetic TiO2 Nano-sheets for PCE, TCE, and TCA Degradations in Aqueous Phase Under VUV Irradiation
详细信息    查看全文
  • 作者:Landry Biyoghe Bi Ndong (1)
    Murielle Primaelle Ibondou (1)
    Xiaogang Gu (1)
    Minhui Xu (1)
    Shuguang Lu (1)
    Zhaofu Qiu (1)
    Qian Sui (1)
    Serge Maurice Mbadinga (2)
  • 关键词:TiO2 synthesis ; Catalytic characterization ; Chlorinated solvent pollutants ; VUV illumination ; Groundwater remediation
  • 刊名:Water, Air, and Soil Pollution
  • 出版年:2014
  • 出版时间:May 2014
  • 年:2014
  • 卷:225
  • 期:5
  • 全文大小:479 KB
  • 参考文献:1. Amano, F., Ishinaga, E., & Yamakata, A. (2013). Effect of particle size on the photocatalytic activity of WO3 particles for water oxidation. / The Journal of Physical Chemistry C, 117, 22584-2590. CrossRef
    2. Chambon, J. C., Bjerg, P. L., Scheutz, C., B?lum, J., Jakobsen, R., & Binning, P. J. (2013). Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. / Biotechnology and Bioengineering, 110, 1. CrossRef
    3. Doherty, R. E. (2000). A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the United States: part 2-trichloroethylene and 1,1,1-trichloroethane. / Environmental Forensics, 1, 83. CrossRef
    4. Dozzi, M., & Selli, E. (2013). Specific facets-dominated anatase TiO2: fluorine-mediated synthesis and photoactivity. / Catalysts, 3, 455-85. CrossRef
    5. Dozzi, M. V., Livraghi, S., Giamello, E., & Selli, E. (2011). Photocatalytic activity of S- and F-doped TiO2 in formic acid mineralization. / Photochemical and Photobiological Sciences, 10, 343. CrossRef
    6. Du, Y., & Rabani, J. (2003). The measure of TiO2 photocatalytic efficiency and the comparison of different photocatalytic titania. / Journal of Physical Chemistry B, 107, 11970. CrossRef
    7. El Saliby, I., Shahid, M., McDonagh, A., Shon, H. K., & Kim, J.-H. (2012). Photodesorption of organic matter from titanium dioxide particles in aqueous media. / Journal of Industrial and Engineering Chemistry, 18, 1774-780. CrossRef
    8. Fox, M. A., & Dulay, M. T. (1993). Heterogeneous photocatalysis. / Chemical Reviews, 93, 341. CrossRef
    9. Griboval, A., Blanchard, P., Gengembre, L., Payen, E., Fournier, M., Dubois, J. L., et al. (1999). Hydrotreatment catalysts prepared with heteropolycompound: characterisation of the oxidic precursors. / Journal of Catalysis, 188, 102-10. CrossRef
    10. Gu, X., Lu, S., Qiu, Z., Sui, Q., Banks, C. J., Imai, T., et al. (2013). Photodegradation performance of 1,1,1-trichloroethane in aqueous solution: in the presence and absence of persulfate. / Chemical Engineering Journal, 215-16, 29-5. CrossRef
    11. Han, X., Kuang, Q., Jin, M., Xie, Z., & Zheng, L. (2009). Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. / Journal of the American Chemical Society, 131, 3152. CrossRef
    12. Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. / Chemical Reviews, 95, 69. CrossRef
    13. Jiao, W., Wang, L., Liu, G., Lu, G. Q., & Cheng, H.-M. (2012). Hollow anatase TiO2 single crystals and mesocrystals with dominant 101 facets for improved photocatalysis activity and tuned reaction preference. / ACS Catalysis, 2, 1854-859. CrossRef
    14. Jung, H.-J., Hong, J.-S., & Suh, J.-K. (2013). A comparison of fenton oxidation and photocatalyst reaction efficiency for humic acid degradation. / Journal of Industrial and Engineering Chemistry, 19, 1325-330. CrossRef
    15. Kim, S.-U., Liu, Y., Nash, K. M., Zweier, J. L., Rockenbauer, A., & Villamena, F. A. (2010). Fast reactivity of a cyclic nitrone ?calix[4]pyrrole conjugate with superoxide radical anion: theoretical and experimental studies. / Journal of the American Chemical Society, 132, 17157-7173. CrossRef
    16. Legube, B., & Karpel Vel Leitner, N. (1999). Catalytic ozonation: a promising advanced oxidation technology for water treatment. / Catalysis Today, 53, 61-2. CrossRef
    17. Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. / Chemical Reviews, 95, 735. CrossRef
    18. Lu, C., Bjerg, P. L., Zhang, F., & Broholm, M. M. (2011). Sorption of chlorinated solvents and degradation products on natural clayey tills. / Chemosphere, 83, 1467. CrossRef
    19. Lv, K., Cheng, B., Yu, J., & Liu, G. (2012). Fluorine ions-mediated morphology control of anatase TiO2 with enhanced photocatalytic activity. / Physical Chemistry Chemical Physics, 14, 5349-362. CrossRef
    20. Monteagudo, J. M., Durán, A., Aguirre, M., & San Martín, I. (2011). Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process. / Journal of Hazardous Materials, 185, 131-39. CrossRef
    21. Naeem, K., & Ouyang, F. (2013). Influence of supports on photocatalytic degradation of phenol and 4-chlorophenol in aqueous suspensions of titanium dioxide. / Journal of Environmental Sciences, 25, 399-04. CrossRef
    22. Oguma, J., Kakuma, Y., Murayama, S., & Nosaka, Y. (2013). Effects of silica coating on photocatalytic reactions of anatase titanium dioxide studied by quantitative detection of reactive oxygen species. / Applied Catalysis B: Environmental, 129, 282-86. CrossRef
    23. Rajeshwar, K., Osugi, M. E., Chanmanee, W., Chenthamarakshan, C. R., Zanoni, M. V. B., Kajitvichyanukul, P., et al. (2008). Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. / Journal of Photochemistry and Photobiology, C: Photochemistry Reviews, 9, 171-92. CrossRef
    24. Rashid, M. M., & Sato, C. (2011). Photolysis, sonolysis, and photosonolysis of trichloroethane (TCA), trichloroethylene (TCE), and tetrachloroethylene (PCE) without catalyst. / Water, Air, and Soil Pollution, 216, 429. CrossRef
    25. Rivett, M. O., Lerner, D. N., & Lloyd, J. W. (1990). Chlorinated solvents in UK aquifers. / Water and Environment Journal, 4, 242. CrossRef
    26. Shen, X.-Z., Liu, Z.-C., Xie, S.-M., & Guo, J. (2009). Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. / Journal of Hazardous Materials, 162, 1193. CrossRef
    27. Stock, N. L., Peller, J., Vinodgopal, K., & Kamat, P. V. (2000). Combinative sonolysis and photocatalysis for textile dye degradation. / Environmental Science & Technology, 34, 1747-750. CrossRef
    28. Tabrez, S., & Ahmad, M. (2012). Genotoxicity of trichloroethylene in the natural milieu. / International Journal of Hygiene and Environmental Health, 215, 333. CrossRef
    29. Wang, Y., Zhang, H., Han, Y., Liu, P., Yao, X., & Zhao, H. (2011). A selective etching phenomenon on 001 faceted anatase titanium dioxide single crystal surfaces by hydrofluoric acid. / Chemical Communications, 47, 2829-831. CrossRef
    30. Wang, G., Xu, L., Zhang, J., Yin, T., & Han, D. (2012). Enhanced photocatalytic activity of TiO2 powders (P25) via calcination treatment. / International Journal of Photoenergy. doi:10.1155/2012/265760 .
    31. Wang, H., Wang, B.-L, Ma, S.-Y. (2013). Synthesis of visible-light-driven TiO2 yolk–shell spheres with {001} facets dominated mesoporous shells, Chinese Chemical Letters, pp. 260-263.
    32. Whang, T.-J., Hsieh, M.-T., Shi, T.-E., & Kuei, C.-H. (2012). UV-irradiated photocatalytic degradation of nitrobenzene by titania binding on quartz tube. / International Journal of Photoenergy. doi:10.1155/2012/681941 .
    33. Wilson, K., Sewell, G., Kean, J. A., & Vangelas, K. (2007). Enhanced attenuation: its place in the remediation of chlorinated solvents. / Remediation Journal, 17, 39-9. CrossRef
    34. Wu, C.-H., Kuo, C.-Y., & Chen, S.-T. (2013). Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation. / Environmental Technology, 34(17), 2513-519. CrossRef
    35. Xiang, Q., Lv, K., & Yu, J. (2010). Pivotal role of fluorine in enhanced photocatalytic activity of anatase TiO2 nanosheets with dominant (001) facets for the photocatalytic degradation of acetone in air. / Applied Catalysis B: Environmental, 96, 557-64. CrossRef
    36. Ye, Z. L., Cao, C. Q., He, J. C., Zhang, R. X., & Hou, H. Q. (2009). Photolysis of organic pollutants in wastewater with 206?nm UV irradiation. / Chinese Chemical Letters, 20, 706-10. CrossRef
    37. Yu, J., Wang, W., Cheng, B., & Su, B.-L. (2009). Enhancement of photocatalytic activity of mesoporous TiO2 powders by hydrothermal surface fluorination treatment. / The Journal of Physical Chemistry C, 113, 6743-750. CrossRef
    38. Zhang, H., Wang, Y., Liu, P., Han, Y., Yao, X., Zou, J., et al. (2011). Anatase TiO2 crystal facet growth: mechanistic role of hydrofluoric acid and photoelectrocatalytic activity. / ACS Applied Materials & Interfaces, 3, 2472-478. CrossRef
  • 作者单位:Landry Biyoghe Bi Ndong (1)
    Murielle Primaelle Ibondou (1)
    Xiaogang Gu (1)
    Minhui Xu (1)
    Shuguang Lu (1)
    Zhaofu Qiu (1)
    Qian Sui (1)
    Serge Maurice Mbadinga (2)

    1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
    2. State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, 200237, China
  • ISSN:1573-2932
文摘
The present study investigates the applicability of the synthesized titanium dioxide (TiO2) for the removal of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1-trichloroethane (TCA) in aqueous phase under VUV illumination. The photo-degradation results indicated that these harmful chemicals can be effectively removed under VUV irradiation, and the addition of the synthesized TiO2 significantly enhanced their degradation. Moreover, using nitrobenzene (NB) as a probe of hydroxyl radical (·OH), the NB degradation rate was better over VUV/synthesized TiO2, suggesting the high concentration of OH generated. The TiO2 used has been synthesized by a simple hydrothermal solution containing tetrabutyl titanate and hydrofluoric acid and characterized by using X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), and X-ray photo-electron spectroscopy (XPS). The characterization results showed that the synthesized TiO2 was in anatase form and consisted of well-defined sheet-shaped structures having a rectangular outline with a thickness of ~4?nm, side length of ~50?nm, and width of ~33?nm and has a surface of 90.3?m2?g?. XPS analysis revealed the formation of ?Ti–F surface bonds. Moreover, the synthesized TiO2 nano-sheets have shown good stability after testing their photo-catalytic activity through five cycles of reuse in TCE degradation. In summary, it can be concluded from the results on both photo-catalytic activity and the surface analyses that the synthesized TiO2 nano-sheets have a great potential for application in chlorinated solvent-contaminated groundwater remediation.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700