用户名: 密码: 验证码:
Synthesis and luminescence properties of Eu(III)-doped silica nanorods based on the sol–gel process
详细信息    查看全文
  • 作者:Chunming Lin (1)
    Yanhua Song (1)
    Fei Gao (1)
    Hongguang Zhang (1)
    Ye Sheng (1)
    Keyan Zheng (1)
    Zhan Shi (2)
    Xuechun Xu (3)
    Haifeng Zou (1)
  • 关键词:Silica nanorods ; Sol–gel method ; Luminescence ; Europium
  • 刊名:Journal of Sol-Gel Science and Technology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:69
  • 期:3
  • 页码:536-543
  • 全文大小:1,369 KB
  • 参考文献:1. Ge S, Liu W, Ge L, Yan M, Yan J, Huang J, Yu J (2013) In situ assembly of porous Au-paper electrode and functionalization of magnetic silica nanoparticles with HRP via click chemistry for microcystin-LR immunoassay. Biosens Bioelectron 49:111-17. doi:10.1016/j.bios.2013.05.010 CrossRef
    2. Dong WJ, Li WJ, Yu KF, Krishna K, Song LZ, Wang XF, Wang ZC, Coppens MO, Feng SH (2003) Synthesis of silica nanotubes from kaolin clay. Chem Commun 11:1302-303. doi:10.1039/b300335c CrossRef
    3. Su X, Zhao J, Zhao X, Guo Y, Zhu Y, Wang Z (2008) A facile synthesis of Cu2O/SiO2 and Cu/SiO2 core–shell octahedral nanocomposites. Nanotechnology 19(36):365610 CrossRef
    4. Satishkumar B, Doorn SK, Baker GA, Dattelbaum AM (2008) Fluorescent single walled carbon nanotube/silica composite materials. ACS Nano 2(11):2283-290 CrossRef
    5. Norman RS, Stone JW, Gole A, Murphy CJ, Sabo-Attwood TL (2008) Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods. Nano Lett 8(1):302-06 CrossRef
    6. Sun B, Sirringhaus H (2006) Surface tension and fluid flow driven self-assembly of ordered ZnO nanorod films for high-performance field effect transistors. J Am Chem Soc 128(50):16231-6237 CrossRef
    7. Kim S, Kim SK, Park S (2009) Bimetallic gold-silver nanorods produce multiple surface plasmon bands. J Am Chem Soc 131(24):8380-381. doi:10.1021/ja903093t CrossRef
    8. Fuhrer M, Kim B, Dürkop T, Brintlinger T (2002) High-mobility nanotube transistor memory. Nano Lett 2(7):755-59 CrossRef
    9. Züttel A, Sudan P, Mauron P, Kiyobayashi T, Emmenegger C, Schlapbach L (2002) Hydrogen storage in carbon nanostructures. Int J Hydrogen Energy 27(2):203-12 CrossRef
    10. Huang P, Wu F, Zhu B, Gao X, Zhu H, Yan T, Huang W, Wu S, Song D (2005) CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. J Phys Chem B 109(41):19169-9174 CrossRef
    11. Dávila LP, Leppert VJ, Bringa EM (2009) The mechanical behavior and nanostructure of silica nanowires via simulations. Scr Mater 60(10):843-46 CrossRef
    12. Son SJ, Bai X, Lee SB (2007) Inorganic hollow nanoparticles and nanotubes in nanomedicine: part 1. Drug/gene delivery applications. Drug Discov Today 12(15):650-56
    13. Lu JJ, Yan M, Ge L, Ge SG, Wang SW, Yan JX, Yu JH (2013) Electrochemiluminescence of blue-luminescent graphene quantum dots and its application in ultrasensitive aptasensor for adenosine triphosphate detection. Biosens Bioelectron 47:271-77. doi:10.1016/j.bios.2013.03.039 CrossRef
    14. Rambabu U, Munirathnam NR, Chatterjee S, Reddy BS, Han SD (2013) Influence of Bi3+ as a sensitizer and SiO2 shell coating as a protecting layer towards the enhancement of red emission in LnVO4: Bi3+, Eu3+ @ SiO2 (Ln?=?Gd, Y and Gd/Y) powder phosphors for optical display devices. Ceram Int 39(5):4801-811. doi:10.1016/j.ceramint.2012.11.070 CrossRef
    15. Chewpraditkul W, Shen Y, Chen D, Nikl M, Beitlerova A (2013) Luminescence of Ce3+- and Eu2+- doped silica glasses under UV and X-ray excitation. J Optoelectron Adv Mater 15(1-):94-8
    16. Liu J, Chang MJ, Gao B, Xu ZG, Zhang HL (2013) Sonication-assisted synthesis of multi-functional gold nanorod/silica core-shell nanostructures. J Alloys Compd 551:405-09. doi:10.1016/j.jallcom.2012.11.042 CrossRef
    17. Cao G (2004) Template-based growth of nanorod arrays by solution methods. In: Optics East, 2004. International Society for Optics and Photonics, pp 185-99
    18. Xue CH, Yin W, Zhang P, Zhang J, Ji PT, Jia ST (2013) UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids Surf A Physicochem Eng Asp 427:7-2. doi:10.1016/j.colsurfa.2013.03.021 CrossRef
    19. Bi LF, Li Y, Wang SB, Zhu ZY, Chen YX, Chen YL, Li BZ, Yang YG (2010) Preparation and characterization of twisted periodic mesoporous ethenylene-silica nanorods. J Sol Gel Sci Technol 53(3):619-25. doi:10.1007/s10971-009-2140-x CrossRef
    20. Pu YY, Li Y, Zhuang W, Zhang M, Li BZ, Yang YG (2012) Preparation and characterizations of helical mesoporous silica nanorods using CTAB and alcohols. Chin Chem Lett 23(10):1201-204. doi:10.1016/j.cclet.2012.07.010 CrossRef
    21. Wang H, Van Der Voort P, Qu H, Liu S (2013) A simple room-temperature synthesis of mesoporous silica rods with tunable size and porosity. J Nanopart Res 15(3):1- CrossRef
    22. Li G, Wang Z, Quan Z, Liu X, Yu M, Wang R, Lin J (2006) Sol-gel growth of Gd2MoO6: Eu3?+?nanocrystalline layers on SiO2 spheres (SiO2@ Gd2MoO6: Eu3?+?and their luminescent properties. Surf Sci 600(16):3321-326 CrossRef
    23. Santana-Alonso A, Yanes A, Méndez-Ramos J, Del-Castillo J, Rodríguez V (2010) Sol–gel transparent nano-glass–ceramics containing Eu3+-doped NaYF4 nanocrystals. J Non Cryst Solids 356(18):933-36 CrossRef
    24. Gao R, Qian D, Li W (2010) Sol-gel synthesis and photoluminescence of LaPO4: Eu3+nanorods. Trans Nonferrous Metals Soc China 20(3):432-36 CrossRef
    25. Qiao Y, Chen H, Lin Y, Yang Z, Cheng X, Huang J (2011) Photoluminescent lanthanide-doped silica nanotubes: sol–gel transcription from functional template. J Phys Chem C 115(15):7323-330. doi:10.1021/jp200515s CrossRef
    26. Azevedo CB, de Souza EA, de Faria EH, Rocha LA, Calefi PS, Ciuffi KJ, Nassar EJ (2013) Optical properties of Eu-doped hybrid materials prepared from dimethyl and methyl alkoxides precursors. J Lumin 134:551-57. doi:10.1016/j.jlumin.2012.07.030 CrossRef
    27. Haranath D, Gandhi N, Sahai S, Husain M, Shanker V (2010) Highly emissive and low refractive index layers from doped silica nanospheres for solar cell applications. Chem Phys Lett 496(1-):100-03. doi:10.1016/j.cplett.2010.07.015 CrossRef
    28. Zhang C, Li C, Huang S, Hou Z, Cheng Z, Yang P, Peng C, Lin J (2010) Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery. Biomaterials 31(12):3374-383. doi:10.1016/j.biomaterials.2010.01.044 CrossRef
    29. Gupta VKN, Mehra A, Thaokar R (2012) Worm-like micelles as templates: formation of anisotropic silver halide nanoparticles. Colloids Surf A Physicochem Eng Asp 393:73-0. doi:10.1016/j.colsurfa.2011.11.003 CrossRef
    30. Yamamoto T, Matsuyama T, Tanaka T, Funabiki T, Yoshida S (1999) Generation of acid sites on silica-supported rare earth oxide catalysts: Structural characterization and catalysis for α-pinene isomerization. Phys Chem Chem Phys 1(11):2841-849 CrossRef
    31. Chen W, Sammynaiken R, Huang Y (2000) Photoluminescence and photostimulated luminescence of Tb3+ and Eu3+ in zeolite-Y. J Appl Phys 88(3):1424-431. doi:10.1063/1.373834 CrossRef
    32. Nassar EJ, Ciuffi KJ, Ribeiro SJL, Messaddeq Y (2003) Europium incorporated in silica matrix obtained by sol-gel: luminescent materials. Mater Res 6(4):557-62 CrossRef
    33. Yin JB, Xiang LQ, Zhao XP (2007) Monodisperse spherical mesoporous Eu-doped TiO2 phosphor particles and the luminescence properties. Appl Phys Lett 90(11):113112. doi:10.1063/1.2712495 CrossRef
    34. Wang Y, Ling LS, Zhu HQ, Ding RQ (2006) Anneal and concentration effect on PL properties of sol-gel derived Eu3+ doped SiO2 glass. J Rare Earths 24:199-03 CrossRef
    35. Hreniak D, Jasiorski M, Maruszewski K, Kepinski L, Krajczyk L, Misiewicz J, Strek W (2002) Nature and optical behaviour of heavily europium-doped silica glasses obtained by the sol–gel method. J Non Cryst Solids 298(2):146-52 CrossRef
    36. Buddhudu S, Morita M, Murakami S, Rau D (1999) Temperature-dependent luminescence and energy transfer in europium and rare earth codoped nanostructured xerogel and sol–gel silica glasses. J Lumin 83:199-03 CrossRef
    37. Stone BT, Costa VC, Bray KL (1997) In situ dehydroxylation in Eu3+ -doped sol-gel silica. Chem Mater 9(11):2592-598 CrossRef
    38. Qiu K, Tian H, Song J, Mao Z, Wang D (2012) Multi-wavelength excitable europium-doped borosilicate glasses for orange-red emission: composition-induced structure and valence variation. J Rare Earths 30(5):408-12 CrossRef
    39. Rodriguez-Liviano S, Aparicio FJ, Rojas TC, Hungría AB, Chinchilla LE, Oca?a M (2011) Microwave-assisted synthesis and luminescence of mesoporous RE-doped YPO4 (RE?=?Eu, Ce, Tb, and Ce?+?Tb) nanophosphors with lenticular shape. Cryst Growth Des 12(2):635-45 CrossRef
    40. Mai M, Feldmann C (2012) Microemulsion-based synthesis and luminescence of nanoparticulate CaWO4, ZnWO4, CaWO4: Tb, and CaWO4: Eu. J Mater Sci 47(3):1427-435 CrossRef
  • 作者单位:Chunming Lin (1)
    Yanhua Song (1)
    Fei Gao (1)
    Hongguang Zhang (1)
    Ye Sheng (1)
    Keyan Zheng (1)
    Zhan Shi (2)
    Xuechun Xu (3)
    Haifeng Zou (1)

    1. College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
    2. State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, People’s Republic of China
    3. College of Earth Science, Jilin University, Changchun, 130012, People’s Republic of China
  • ISSN:1573-4846
文摘
Uniform Eu3+-doped SiO2 nanorods were synthesized through a simple sol–gel method using cetyltrimethylammonium bromide (CTAB) as surfactant template and tetraethylorthosilicate as silicon source. X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectrum, scanning electron microscope (SEM), transmission electron microscopy, and photoluminescence spectra were employed to characterize the products in detail. The nanorods have good uniformity and their diameters and lengths are in the range of 200-00 and 500-00?nm through the SEM images, respectively. The formation of the nanorods was studied by taking SEM images after different aging time. The experimental results indicate that CTAB plays a crucial role in the formation of the silica nanorods. The luminescence of Eu3+-doped SiO2 nanorods is dominated by red-emission around 612?nm due to intra-atomic 4f?→?f (5D0?→?sup class="a-plus-plus">7F2) transition of Eu3+ ions. Furthermore, the effect of doping concentrations of Eu3+ ions on the luminescence was investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700