用户名: 密码: 验证码:
Artificial landmark-based underwater localization for AUVs using weighted template matching
详细信息    查看全文
  • 作者:Donghoon Kim (1)
    Donghwa Lee (1)
    Hyun Myung (1)
    Hyun-Taek Choi (2)
  • 关键词:Vision processing ; Object detection ; Segmentation ; Localization ; Autonomous underwater vehicle
  • 刊名:Intelligent Service Robotics
  • 出版年:2014
  • 出版时间:July 2014
  • 年:2014
  • 卷:7
  • 期:3
  • 页码:175-184
  • 全文大小:1,527 KB
  • 参考文献:1. Caccia M (2006) Laser-triangulation optical-correlation sensor for ROV slow motion estimation. IEEE J Ocean Eng 31(3):711鈥?27 CrossRef
    2. Caccia M (2007) Vision-based ROV horizontal motion control: near-seafloor experimental results. Control Eng Pract 15(6):703鈥?14 CrossRef
    3. Ferreira F, Veruggio G, Caccia M, Bruzzone G (2012) Real-time optical SLAM-based mosaicking for unmanned underwater vehicles. Intell Serv Robot 5(1):55鈥?1 CrossRef
    4. Leabourne KN, Rock SM, Fleischer SD, Burton R (1997) Station keeping of an ROV using vision technology. In: Proceedings on MTS/IEEE OCEANS鈥?7, vol 1, pp 634鈥?40
    5. Negahdaripour S, Firoozfam P (2006) An ROV stereovision system for ship-hull inspection. IEEE J Ocean Eng 31(3):551鈥?64 CrossRef
    6. Nomoto M, Hattori M (1986) A deep ROV 鈥淒OLPHIN 3K鈥? design and performance analysis. IEEE J Ocean Eng 11(3):373鈥?91 CrossRef
    7. Whitcomb L, Yoerger D, Singh H, Howland J (1999) Advances in underwater robot vehicles for deep ocean exploration: navigation, control, and survey operations. Navigation, control and survery operations. In: 9th International symposium on robotics research, pp 346鈥?53
    8. Yoerger D, Newman J, Slotine JJ (1986) Supervisory control system for the Jason ROV. IEEE J Ocean Eng 11(3):392鈥?00 CrossRef
    9. Hollinger GA, Englot B, Hover FS, Mitra U, Sukhatme GS (2013) Active planning for underwater inspection and the benefit of adaptivity. Int J Robot Res 32(1):3鈥?8 CrossRef
    10. Jun BH, Park JY, Lee FY, Lee PM, Lee CM, Kim K, Lim YK, Oh JH (2009) Development of the AUV isimiand a free running test in an ocean engineering basin. Ocean Eng 36(1):2鈥?4 CrossRef
    11. Kim A, Eustice R (2009) Pose-graph visual SLAM with geometric model selection for autonomous underwater ship hull inspection. In: Procedings on IEEE/RSJ international conference on intelligent robotics and systems, pp 1559鈥?565
    12. Marani G, Choi S (2010) Underwater target localization. IEEE Robot Autom Mag 17(1):64鈥?0 CrossRef
    13. Webster SE, Eustice RM, Singh H, Whitcomb LL (2012) Advances in single-beacon one-way-travel-time acoustic navigation for underwater vehicles. Int J Robot Res 31(8):935鈥?50 CrossRef
    14. Yu SC, Ura T, Fujii T, Kondo H (2001) Navigation of autonomous underwater vehicles based on artificial underwater landmarks. In: Procedings on MTS/IEEE OCEANS 2001, pp 409鈥?16
    15. Park JY, Jun BH, Lee PM, Oh J (2009) Experiments on vision guided docking of an autonomous underwater vehicle using one camera. Ocean Eng 36(1):48鈥?1 CrossRef
    16. Dudek G, Jenkin M, Prahacs C, Hogue A, Sattar J, Giguere P, German A, Liu H, Saunderson S, Ripsman A et al (2005) A visually guided swimming robot. In: Procedings on IEEE/RSJ international conference on intelligent robotics and systems, pp 3604鈥?609
    17. Sattar J, Dudek G (2009) Robust servo-control for underwater robots using banks of visual filters. In: Procedings on IEEE international conference on robotics and automation, pp 3583鈥?588
    18. Negre A, Pradalier C, Dunbabin M (2008) Robust vision-based underwater homing using self-similar landmarks. J Field Robot 25(6鈥?):360鈥?77 CrossRef
    19. Maire FD, Prasser D, Dunbabin M, Dawson M (2009) A vision based target detection system for docking of an autonomous underwater vehicle. In: Proceedings of the Australasian conference on robotics and automation. Australian Robotics and Automation Association, Sydney
    20. Lee D, Kim G, Kim D, Myung H, Choi HT (2012) Vision-based object detection and tracking for autonomous navigation of underwater robots. Ocean Eng 48:59鈥?8 CrossRef
    21. Kim D, Lee D, Myung H, Choi HT (2012) Object detection and tracking for autonomous underwater robots using weighted template matching. In: Procedings on MTS/IEEE OCEANS 2012. IEEE, pp 1鈥?
    22. Balasuriya B, Takai M, Lam W, Ura T, Kuroda Y (1997) Vision based autonomous underwater vehicle navigation: underwater cable tracking. In: Procedings on MTS/IEEE OCEANS鈥?7, vol 2, pp 1418鈥?424
    23. Hover FS, Eustice RM, Kim A, Englot B, Johannsson H, Kaess M, Leonard JJ (2012) Advanced perception, navigation and planning for autonomous in-water ship hull inspection. Int J Robot Res 31(12):1445鈥?464 CrossRef
    24. Brunelli R (2009) Template matching techniques in computer vision: theory and practice. Wiley, New York CrossRef
    25. Dellaert F, Fox D, Burgard W, Thrun S (1999) Monte Carlo localization for mobile robots. In: Procedings on IEEE international conference on robotics and automation, vol 2, pp 1322鈥?328
    26. Aulinas J, Carreras M, Llado X, Salvi J, Garcia R, Prados R, Petillot YR (2011) Feature extraction for underwater visual SLAM. In: Procedings on MTS/IEEE OCEANS 2011, pp 1鈥?
    27. Salvi J, Petillot Y, Thomas S, Aulinas J (2008) Visual slam for underwater vehicles using video velocity log and natural landmarks. In: Procedings on MTS/IEEE OCEANS 2008, pp 1鈥?
    28. Singh H, Can A, Eustice R, Lerner S, McPhee N, Pizarro O, Roman C (2004) Seabed AUV offers new platform for high-resolution imaging. Eos Trans Am Geophys Union 85(31):289鈥?96 CrossRef
    29. Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal 22(11):1330鈥?334 CrossRef
    30. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal 24(5):603鈥?19 CrossRef
    31. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Procedings on 6th international conference on computer vision, pp 839鈥?46
    32. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91鈥?10 CrossRef
    33. Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Proceedings on European conference on computer vision, pp 404鈥?17
    34. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal 27(10):1615鈥?630 CrossRef
    35. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 886鈥?93
    36. KoreaLPS. http://korealps.co.kr. Accessed 12 Apr 2014
    37. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861鈥?74 CrossRef
  • 作者单位:Donghoon Kim (1)
    Donghwa Lee (1)
    Hyun Myung (1)
    Hyun-Taek Choi (2)

    1. Urban Robotics Lab., Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
    2. Ocean System Engineering Research Division, Korea Research Institute of Ships and Ocean Engineering (KRISO), 32 1312 Beon-gil, Yuseong-daero, Yuseong-gu, Daejeon, 305-343, Republic of Korea
  • ISSN:1861-2784
文摘
This paper deals with vision-based localization techniques in structured underwater environments. For underwater robots, accurate localization is necessary to perform complex missions successfully, but few sensors are available for accurate localization in the underwater environment. Among the available sensors, cameras are very useful for performing short-range tasks despite harsh underwater conditions including low visibility, noise, and large areas of featureless scene. To mitigate these problems, we design artificial landmarks to be utilized with a camera for localization, and propose a novel vision-based object detection technique and apply it to the Monte Carlo localization (MCL) algorithm, a map-based localization technique. In the image processing step, a novel correlation coefficient using a weighted sum, multiple-template-based object selection, and color-based image segmentation methods are proposed to improve the conventional approach. In the localization step, to apply the landmark detection results to MCL, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform and the results are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700