用户名: 密码: 验证码:
Field experiments of multi-channel oceanographic fluorescence lidar for oil spill and chlorophyll-a detection
详细信息    查看全文
  • 作者:Xiaolong Li (1) (2)
    Chaofang Zhao (1)
    Youjun Ma (1)
    Zhishen Liu (1)
  • 关键词:oceanographic lidar ; oil spill ; marine environment ; fluorescence spectrum ; Raman scattering
  • 刊名:Journal of Ocean University of China
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:13
  • 期:4
  • 页码:597-603
  • 全文大小:598 KB
  • 参考文献:1. Aim茅, L. E., Giuseppe, V., and Amerigo, T., 2008. Automatic gain control for Raman Lidar signals. In: / Proceedings of the SPIE 7153, 12/2008, DOI: 10.1117/12.804864.
    2. Babichenko, S., 2008. Laser remote sensing of the European marine environment: LIF technology and applications. In: / Remote Sensing of the European Seas. Barale, V., and Gade, M., eds., Springer, Netherlands, 189鈥?04. DOI: 10.1007/978-1-4020-6772-3_15. CrossRef
    3. Barbaro, A., Cecchi, G., and Mazzinghi, P., 1991. Oil UV extinction coefficient measurement using a standard spectrophotometer. / Applied Optics, 30(7): 852鈥?57. CrossRef
    4. Bristow, M., Nielsen, D., Bundy, D., and Furtek, R., 1981. Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation. / Applied Optics, 20(17): 2889鈥?906. CrossRef
    5. Brown, C. E., and Fingas, M. F., 2003a. Review of the development of laser fluorosensors for oil spill application. / Marine Pollution Bulletin, 47(9鈥?2): 477鈥?84, DOI: 10.1016/S0025-326X (03)00213-3. CrossRef
    6. Brown, C. E., and Fingas, M. F., 2003b. Development of airborne oil thickness measurements. / Marine Pollution Bulletin, 47(9鈥?2): 485鈥?92. CrossRef
    7. Camagni, P., Colombo, A., Koechler, C., Omenetto, N., Qi, P., and Rossi, G., 1991. Fluorescence response of mineral oils: spectral yield vs absorption and decay time. / Applied Optics, 30(1): 26鈥?5. CrossRef
    8. Hengsterman, T., and Reuter, R., 1990. Lidar fluorosensing of mineral oil spill on the sea surface. / Applied Optics, 29(22): 3218鈥?227. CrossRef
    9. Hoge, F. E., and Swift, R. N., 1980. Oil film thickness measurement using airborne laser-induced water Raman backscatter. / Applied Optics, 19(19): 3269鈥?281. CrossRef
    10. Hoge, F. E., Lyon, P. E., Wright, C. W., Swift, R. N., and Yungel, J. K., 2005. Chlorophyll biomass in the global ocean: Airborne Lidar retrieval using fluorescence of both chlorophyll and chromophic dissolved organic matter. / Applied Optics, 44(14): 2857鈥?862. CrossRef
    11. Hoge, F. E., Swift, R. N., and Yungel, J. K., 1983. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants. / Applied Optics, 22(19): 2991鈥?000. CrossRef
    12. Jha, M. N., Levy, J., and Gao, Y., 2008. Advances in remote sensing for oil spill disaster management: State-of-the-art sensors technology for oil spill surveillance. / Sensors, 8(1): 236鈥?55. CrossRef
    13. Karpicz, R., Dementjev, A., Kuprionis, Z., Pakalnis, S., Westphal, R., Reuter, R., and Gulbinas, V., 2006. Oil spill fluorosensing Lidar for inclined onshore or shipboard operation. / Applied Optics, 45(25): 6620鈥?625. CrossRef
    14. Kung, R. T., and Itzkan, I., 1976. Absolute oil fluorescence conversion efficiency. / Applied Optics, 15(2): 409鈥?15. CrossRef
    15. Li, J., Fuller, S., Cattle, J., Way, C. P., and Hibbert, D. B., 2004. Matching fluorescence spectra of oil spills with spectra from suspect sources. / Analytica Chimica Acta, 514(1): 51鈥?6. CrossRef
    16. Li, X. L., Zhao, C. F., Qi, M. J., Ma, Y. J., Li, Z. G., and Liu, Z. S., 2010. The experiment of multi-channel oceanographic laser remote sensing of oil spills system at high platform. / Periodical of Ocean University of China, 40(8): 145鈥?50 (in Chinese with English abstract).
    17. Liu, Z. S., Ma, S., Wang, X., and Li, Z. G., 2008. Field detection of chlorophyll- / a concentration in the sea surface layer by an airborne oceanographic lidar. / Journal of Ocean University of China, 7(1): 108鈥?12. CrossRef
    18. Patsayeva, S., Yuhakov, V., Varlamov, V., Barbini, R., Fantoni, R., Frassanito, C., and Palucci, A., 2000. Laser spectroscopy of mineral oils on the water surface. In: / Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden, Germany, 6/2000: 106鈥?14.
    19. Utkin, A. B., Lavrov, A., and Vilar, R., 2011. Evaluation of water pollution by LIF LIDAR. In: / 5th EARSeL Workshop on Remote Sensing of the Coastal Zone, Prague, Czech Republic, 6/2011: 104鈥?13.
    20. Vasilescu, J., Onciu, T., Jugaru, L., and Belegante, L., 2009. Remote estimation of fluorescence marine components distribution. / Romanian Reports in Physics, 61(3): 721鈥?29.
    21. Yarovenko, N. V., Cruz, M. C. M., Vilas, L. G., Pereira, D., Mart铆n, J., and Palenzuela, J. M. T., 2011. Oil pollution using shipborne LIF/LIDAR. In: / 5thEARSeL Workshop on Remote Sensing of the Coastal Zone, Prague, Czech Republic, 6/2011: 94鈥?03.
    22. Zhao, C. F., Li, X. L., and Ma, Y. J., 2011. Multi-channel ocean fluorescence lidar system for oil spill monitoring. / Infrared and Laser Engineering, 40(7): 1263鈥?269 (in Chinese).
  • 作者单位:Xiaolong Li (1) (2)
    Chaofang Zhao (1)
    Youjun Ma (1)
    Zhishen Liu (1)

    1. Ocean Remote Sensing Institute, Ocean University of China, Qingdao, 266003, P. R. China
    2. Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, P. R. China
  • ISSN:1993-5021
文摘
A Multi-channel Oceanographic Fluorescence Lidar (MOFL), with a UV excitation at 355 nm and multiple receiving channels at typical wavelengths of fluorescence from oil spills and chlorophyll-a (Chl-a), has been developed using the Laser-induced Fluorescence (LIF) technique. The sketch of the MOFL system equipped with a compact multi-channel photomultiplier tube (MPMT) is introduced in the paper. The methods of differentiating the oil fluorescence from the background water fluorescence and evaluating the Chl-a concentration are described. Two field experiments were carried out to investigate the field performance of the system, i.e., an experiment in coastal areas for oil pollution detection and an experiment over the Yellow Sea for Chl-a monitoring. In the coastal experiment, several oil samples and other fluorescence substances were used to analyze the fluorescence spectral characteristics for oil identification, and to estimate the thickness of oil films at the water surface. The experiment shows that both the spectral shape of fluorescence induced from surface water and the intensity ratio of two channels (I 495/I 405) are essential to determine oil-spill occurrence. In the airborne experiment, MOFL was applied to measure relative Chl-a concentrations in the upper layer of the ocean. A comparison of relative Chl-a concentration measurements by MOFL and the Moderate Resolution Imaging Spectroradiometer (MODIS) indicates that the two datasets are in good agreement. The results show that the MOFL system is capable of monitoring oil spills and Chl-a in the upper layer of ocean water.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700