用户名: 密码: 验证码:
Direct measurement of the Raman enhancement factor of rhodamine 6G on graphene under resonant excitation
详细信息    查看全文
  • 作者:Shibin Deng ; Weigao Xu ; Jinying Wang ; Xi Ling ; Juanxia Wu ; Liming Xie…
  • 关键词:graphene ; rhodamine 6G ; Raman enhancement ; polarization ; difference resonance Raman spectroscopy ; optical contrast spectroscopy
  • 刊名:Nano Research
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:7
  • 期:9
  • 页码:1271-1279
  • 全文大小:1,519 KB
  • 参考文献:1. Ling, X.; Xie, L. M.; Fang, Y.; Xu, H.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J.; Liu, Z. F., Can graphene be used as a substrate for Raman enhancement? / Nano Lett. 2010, / 10, 553-61. CrossRef
    2. Ling, X.; Zhang, J., First-layer effect in graphene-enhanced Raman scattering. / Small 2010, / 6, 2020-025. CrossRef
    3. Ling, X.; Wu, J.; Xu, W.; Zhang, J. Probing the effect of molecular orientation on the intensity of chemical enhancement using graphene-enhanced Raman spectroscopy. / Small 2012, / 8, 1365-372. CrossRef
    4. Xu, H.; Chen, Y. B.; Xu, W. G.; Zhang, H. L.; Kong, J.; Dresselhaus, M. S.; Zhang, J. Modulating the charge-transfer enhancement in GERS using an electrical field under vacuum and an n/p-doping atmosphere. / Small 2011, / 7, 2945-952. CrossRef
    5. Xu, H.; Xie, L. M.; Zhang, H. L.; Zhang, J. Effect of graphene fermi level on the Raman scattering intensity of molecules on graphene. / ACS Nano 2011, / 5, 5338-344. CrossRef
    6. Ling, X.; Wu, J.; Xie, L.; Zhang, J. Graphene-thickness-dependent graphene-enhanced Raman scattering. / J Phys. Chem. C 2013, / 117, 2369-376. CrossRef
    7. Ling, X.; Moura, L. G.; Pimenta, M. A.; Zhang, J. Chargetransfer mechanism in graphene-enhanced Raman scattering. / J. Phys. Chem. C 2012, / 116, 25112-5118. CrossRef
    8. Thrall, E. S.; Crowther, A. C.; Yu, Z.; Brus, L. E. R6G on graphene: High Raman detection sensitivity, yet decreased Raman cross-section. / Nano Lett 2012, / 12, 1571-577. CrossRef
    9. Penzkofer, A.; Drotleff, E.; Holzer, W. Optical constants measurement of single-layer thin films on transparent substrates. / Opt. Commun. 1998, / 158, 221-30. CrossRef
    10. Shim, S.; Stuart, C. M.; Mathies, R. A. Resonance Raman cross-sections and vibronic analysis of rhodamine 6G from broadband stimulated Raman spectroscopy. / ChemPhysChem 2008, / 9, 697-99. CrossRef
    11. Zhang, J.; Xie, L. M.; Ling, X.; Fang, Y.; Liu, Z. F. Graphene as a substrate to suppress fluorescence in resonance Raman spectroscopy. / J. Am. Chem. Soc. 2009, / 131, 9890-891. CrossRef
    12. Matousek, P.; Towrie, M.; Ma, C.; Kwok, W. M.; Phillips, D.; Toner, W. T.; Parker, A. W. Fluorescence suppression in resonance Raman spectroscopy using a high-performance picosecond Kerr gate. / J. Raman Spectrosc. 2001, / 32, 983-88. CrossRef
    13. Volkmer, A. Vibrational imaging and microspectroscopies based on coherent anti-Stokes Raman scattering microscopy. / J. Phys. D-Appl. Phys. 2005, / 38, R59–R81. CrossRef
    14. Le Ru, E. C.; Schroeter, L. C.; Etchegoin, P. G. Direct measurement of resonance Raman spectra and cross sections by a polarization difference technique. / Anal. Chem. 2012, / 84, 5074-079. CrossRef
    15. Le Ru, E.; Etchegoin, P. Principles of Surface-Enhanced Raman Spectroscopy and Related Plasmonic Effects; Elsevier Science: Amsterdam, 2008.
    16. Palik, E. D. / Handbook of Optical Constants of Solids: Index, / Vol. 3; Academic Press, 1998.
    17. Soper, S. A.; Nutter, H. L.; Keller, R. A.; Davis, L. M.; Shera, E. B. The photophysical constants of several fluorescent dyes pertaining to ultrasensitive fluorescence spectroscopy. / Photochem Photobiol 1993, / 57, 972-77. CrossRef
    18. Huang, C. S.; Kim, M.; Wong, B. M.; Safron, N. S.; Arnold, M. S.; Gopalan, P. Raman enhancement of a dipolar molecule on graphene. / J Phys Chem C 2014, / 118, 2077-084. CrossRef
    19. Zhao, J.; Jensen, L.; Sung, J. H.; Zou, S. L.; Schatz, G. C.; Van Duyne, R. P. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. / J. Am. Chem. Soc. 2007, / 129, 7647-656. CrossRef
    20. Auguie, B.; Reigue, A.; Le Ru, E. C.; Etchegoin, P. G. Tiny peaks vs. mega backgrounds: A general spectroscopic method with applications in resonant Raman scattering and atmospheric absorptions. / Anal. Chem. 2012, / 84, 7938-945. CrossRef
    21. Clark, R. J. H.; Dines, T. J. Resonance Raman-spectroscopy, and its application to inorganic-chemistry. / Angew. Chem.-Int. Ed. 1986, / 25, 131-58. CrossRef
    22. Jensen, L.; Aikens, C. M.; Schatz, G. C. Electronic structure methods for studying surface-enhanced Raman scattering. / Chem. Soc. Rev. 2008, / 37, 1061-073. CrossRef
    23. Thorn, D. L.; Fultz, W. C. Rhodamine complexes. Preparation, photophysical properties, and the structure of [Rh(rhodamine) (CO)(P(tol)3)2][SbF6]. / J. Phys. Chem. 1989, / 93, 1234-243. CrossRef
    24. Zhao, J.; Jensen, L.; Sung, J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. Interaction of plasmon and molecular resonances for rhodamine 6G adsorbed on silver nanoparticles. / J. Am. Chem. Soc. 2007, / 129, 7647-656. CrossRef
    25. Zhang, X. F.; Liu, S. P.; Shao, X. N. Noncovalent binding of xanthene and phthalocyanine dyes with graphene sheets: The effect of the molecular structure revealed by a photophysical study. / Spectrochim Acta A 2013, / 113, 92-9. CrossRef
    26. Xu, W.; Mao, N.; Zhang, J. Graphene: A platform for surface-enhanced Raman spectroscopy. / Small 2013, / 9, 1206-224. CrossRef
    27. Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Surface enhanced Raman spectroscopy on a flat graphene surface. / P. Natl. Acad. Sci. USA 2012, / 109, 9281-286. CrossRef
    28. Wang, X. T.; Shi, W. S.; She, G. W.; Mu, L. X. Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism. / J. Am. Chem. Soc. 2011, / 133, 16518-6523. CrossRef
    29. Yang, L. B.; Jiang, X.; Ruan, W. D.; Zhao, B.; Xu, W. Q.; Lombardi, J. R. Observation of enhanced Raman scattering for molecules adsorbed on TiO2 nanoparticles: Charge-transfer contribution. / J. Phys. Chem. C 2008, / 112, 20095-0098. CrossRef
    30. Jensen, L.; Schatz, G. C. Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. / J. Phys. Chem. A 2006, / 110, 5973-977. CrossRef
  • 作者单位:Shibin Deng (1)
    Weigao Xu (1)
    Jinying Wang (1)
    Xi Ling (2)
    Juanxia Wu (1)
    Liming Xie (3)
    Jing Kong (2)
    Mildred S. Dresselhaus (2) (4)
    Jin Zhang (1)

    1. Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
    2. Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
    3. Key Laboratory of Standardization and Measurement for Nanotechnology of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
    4. Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
  • ISSN:1998-0000
文摘
Graphene substrates have recently been found to generate Raman enhancement. Systematic studies using different Raman probes have been implemented, but one of the most commonly used Raman probes, rhodamine 6G (R6G), has yielded controversial results for the enhancement effect on graphene. Indeed, the Raman enhancement factor of R6G induced by graphene has never been measured directly under resonant excitation because of the presence of intense fluorescence backgrounds. In this study, a polarization-difference technique is used to suppress the fluorescence background by subtracting two spectra collected using different excitation laser polarizations. As a result, enhancement factors are obtained ranging between 1.7 and 5.6 for the four Raman modes of R6G at 611, 1,183, 1,361, and 1,647 cm? under resonant excitation by a 514.5 nm laser. By comparing these results with the results obtained under non-resonant excitation (632.8 nm) and pre-resonant excitation (593 nm), the enhancement can be attributed to static chemical enhancement (CHEM) and tuning of the molecular resonance. Density functional theory simulations reveal that the orbital energies and densities for R6G are modified by graphene dots.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700