用户名: 密码: 验证码:
Success rate improvement of single epoch integer least-squares estimator for the GNSS attitude/short baseline applications with common clock scheme
详细信息    查看全文
  • 作者:Wantong Chen (1)
    Xiaoqiang Li (2)
  • 关键词:GNSS ; Ambiguity success rate ; Integer estimation ; Common clock
  • 刊名:Acta Geodaetica et Geophysica
  • 出版年:2014
  • 出版时间:September 2014
  • 年:2014
  • 卷:49
  • 期:3
  • 页码:295-312
  • 全文大小:277 KB
  • 参考文献:1. Abadir KM (2005) Matrix algebra. Cambridge University Press, Cambridge, pp 114鈥?15 CrossRef
    2. Alban S (2004) Design and performance of a robust GPS/INS attitude system for auto-mobile applications. Ph.D. Thesis, Stanford University, Stanford, CA, USA
    3. Buist PJ (2007) The baseline constrained LAMBDA method for single epoch, single frequency attitude determination applications. In: Proceedings of ION GPS. Fort Worth, TX, USA, pp 2962鈥?973
    4. Buist PJ (2013) Multi-platform integrated positioning and attitude determination using GNSS. Ph.D. Thesis, Delft University of Technology
    5. Buist PJ, Teunissen PJG, Giorgi G, Verhagen S (2010) Multivariate bootstrapped relative positioning of spacecraft using GPS L1/Galileo E1 signals. Adv Space Res 47(5):770鈥?85 CrossRef
    6. Chen W, Qin H (2012) New method for single epoch, single frequency land vehicle attitude determination using low-end GPS receiver. GPS Sol 16(3):329鈥?38 CrossRef
    7. Chen W, Qin H, Zhang Y, Jin T (2012) Accuracy assessment of single and double difference models for the single epoch GPS compass. Adv Space Res 49(4):725鈥?38 CrossRef
    8. Cohen CE (1992) Attitude determination using GPS. Ph.D. Thesis, Stanford Univeristy, Palo Alto, CA
    9. Gebre-Egziabher D, Hayward RC, Powell JD (1998) A low-cost GPS/Inertial attitude heading reference system (AHRS) for general aviation application. In: Proceedings of IEEE position location and navigation symposium, pp 518鈥?25
    10. Giorgi G, Teunissen PJG, Verhagen S, Buist PJ (2010) Testing a new multivariate GNSS carrier phase attitude determination method for remote sensing platforms. Adv Space Res 46(2):118鈥?29 CrossRef
    11. Giorgi G, Teunissen PJG, Gourlay TP (2012a) Instantaneous global navigation satellite system (GNSS)-based attitude determination for maritime applications. IEEE J Ocean Eng 37(eq3):348鈥?62 CrossRef
    12. Giorgi G, Teunissen PJG, Verhagen S, Buist PJ (2012b) Instantaneous ambiguity resolution in GNSS-based attitude determination applications: the MC-LAMBDA method. J Guid Control Dyn 35(1):51鈥?7 CrossRef
    13. Jin SG, Wang J, Park PH (2005) An improvement of GPS height estimates: stochastic modeling. Earth Planets Space 57(4):253鈥?59 CrossRef
    14. Jin SG, Luo OF, Ren C (2010) Effects of physical correlations on long-distance GPS positioning and zenith tropospheric delay estimates. Adv Space Res 46(2):190鈥?95 CrossRef
    15. Keong JH (1999) GPS/GLONASS attitude determination with a common clock using a single difference approach. In: Proceedings of the international technical meeting of the satellite division of the institute of navigation, ION-GPS 鈥?9, Nashville, TN, USA, pp 1941鈥?950
    16. Li Y, Zhang K, Roberts C, Murata M (2004) On-the-fly GPS-based attitude determination using single- and double-differenced carrier phase measurements. GPS Solut 8(2):93鈥?02 CrossRef
    17. Odijk D, Teunissen PJG (2008) ADOP in closed form for a hierarchy of multi-frequency single-baseline GNSS models. J Geod 82(8):473鈥?92 CrossRef
    18. Park C, Teunissen PJG (2009) Integer least squares with quadratic equality constraints and its application to GNSS attitude determination systems. Int J Control Autom Syst 7(4):566鈥?76 CrossRef
    19. Qin Honglei, Chen Wantong (2013) Application of the constrained moving horizon estimation method for the ultra-short baseline attitude determination [J]. Acta Geod et Geophys Hung 48(1):27鈥?6
    20. Richert T, El-Sheimy N (2007) Optimal linear combinations of triple frequency carrier phase data from future global navigation satellite systems. GPS Solut 11(1):11鈥?9 CrossRef
    21. Simsky A, Kuylen LV, Boon F (2005) Single-board attitude determination system based on the PolaRx2@GPS Receiver. In: Proceedings of ENC GNSS 2005, Munich, Germany, p 23
    22. Teunissen PJG (1995) The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod 70(1):65鈥?2 CrossRef
    23. Teunissen PJG (1997a) A canonical theory for short GPS baselines. Part I: the baseline precision; Part II: the ambiguity precision and correlation; Part III: the geometry of the ambiguity search space; Part IV: precision versus reliability. J Geod, 71(6):32鈥?36, 389鈥?01, 486鈥?01, 513鈥?25
    24. Teunissen PJG (1997b) GPS double difference statistics: with and without using satellite geometry. J Geod 71(3):138鈥?48 CrossRef
    25. Teunissen PJG (1999) An optimality property of the integer least-squares estimator. J Geod 73(11):587鈥?93 CrossRef
    26. Teunissen PJG (2003) Towards a unified theory of GNSS ambiguity resolution. J Glob Position Syst 2(1):1鈥?2 CrossRef
    27. Teunissen PJG (2007) The LAMBDA method for the GNSS compass. Artif Satell 41(3):89鈥?03
    28. Teunissen PJG (2010) Integer least squares theory for the GNSS Compass. J Geod 84(7):433鈥?47 CrossRef
    29. Teunissen PJG, Kleusberg A (1998) GPS for geodesy, 2nd edn. Springer, Berlin CrossRef
    30. Teunissen PJG, Odijk D (1997) Ambiguity dilution of precision: definition, properties and application. In: Proceedings of the 10th ION-ITM, Kansas City, MO, USA, pp 891鈥?99
    31. Teunissen PJG, Giorgi G, Buist PJ (2011) Testing of a new single-frequency GNSS carrier-phase compass method: land, ship and aircraft experiments. GPS Solut 15(1):15鈥?8 CrossRef
    32. Verhagen S (2005) On the reliability of integer ambiguity resolution. Navigation 52(2):99鈥?10
    33. Verhagen S (2006) Visualization of GNSS-related design parameters: manual for the matlab user interface VISUAL鈥? http://www.citg.tudelft.nl/en/about-faculty/departments/geoscience-and-remote-sensing/research-themes/gps/quality-control/visual-software/. Accessed 1 Nov 2013
    34. Verhagen S, Teunissen PJG (2006) New global navigation satellite system ambiguity resolution method compared to existing approaches. J Guid Control Dyn 29(4):981鈥?91 CrossRef
    35. Verhagen S, Li B, Teunissen PJG (2013) Ps-LAMBDA: ambiguity success rate evaluation software for interferometric applications. Comput Geosci 54:361鈥?76 CrossRef
    36. Wang Y, Zhan X, Zhang Y (2007) Improved ambiguity function method based on analytical resolution for GPS attitude determination. Meas Sci Technol 18:2985鈥?990 CrossRef
  • 作者单位:Wantong Chen (1)
    Xiaoqiang Li (2)

    1. Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, Tianjin, 聽300300, People鈥檚 Republic of China
    2. School of Electronic and Information Engineering, Beihang University, Beijing, 聽100191, People鈥檚 Republic of China
  • ISSN:2213-5820
文摘
The sub-centimeter level relative positioning can be accomplished anytime and anywhere on Earth, provided that the integer ambiguities of the very precise Global Navigation Satellite System (GNSS) carrier-phase observables are correctly resolved. The Integer Least-Squares (ILS) estimator is known to be efficient and optimal for Integer Ambiguity Resolution (IAR) of the unconstrained GNSS model, and the stronger the model strength, the higher the success rate. In this contribution, we investigate the model strength of the common clock scheme, in which the two receivers of the short baseline feed a common clock and the cables have the same delay and many GNSS-based attitude/short baseline applications benefit from this approach. For this scheme, the clock biases between two receivers will be zero and can be omitted, and thus it has a stronger model strength and a higher success rate, compared with the non-common clock scheme. In this contribution, the well-known Ambiguity Dilution of Precision (ADOP), which captures the main characteristics of the ambiguity precision, is utilized to assess the model strengthening when the perfectly synchronized receivers are employed. The mathematical expression of the single epoch ADOP is deduced by the given design parameters, and thus the ADOP-based approximate ILS success rate can be easily computed with the specified measurement set-up which includes the number of available satellites and frequencies and the precision of observation. We focus on the success rate assessment of the common clock scheme for stand-alone, unaided, single-frequency, single epoch observation with only five visible satellites, since it is the most challenging case of GNSS relative positioning and in this case the performance of the employed ambiguity resolution method can be investigated effectively. Thus, one can predict whether or not the required performance will be obtained for the worst case.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700