用户名: 密码: 验证码:
Research Advances on Apoptosis Caused by Quantum Dots
详细信息    查看全文
  • 作者:Qingling Zhan ; Meng Tang
  • 关键词:Quantum dots ; Apoptosis ; Mechanism ; Biological negative effects ; Toxicity living organisms ; Nanotoxicology
  • 刊名:Biological Trace Element Research
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:161
  • 期:1
  • 页码:3-12
  • 全文大小:548 KB
  • 参考文献:1. Xiao Q, Qiu T, Huang S, Liu Y, He Z (2012) preparation and biological effect of nucleotide-capped CdSe/ZnS quantum dots on / Tetrahymena thermophila. Biol Trace Elem Res 147:346-53 CrossRef
    2. Kim S, Fisher B, Eisler HJ, Bawendi MG (2003) Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J Am Chem Soc 125(38):11466-1467 CrossRef
    3. Yang B, Liu R, Hao X, Wu Y, Du J (2013) Effect of CdTe quantum dots size on the conformational changes of human serum albumin: results of spectroscopy and isothermal titration calorimetry. Biol Trace Elem Res 155:150-58 CrossRef
    4. Manabe N, Hoshino A, Liang YQ, Goto T, Kato N, Yamamoto K (2006) Quantum dot as a drug tracer in vivo. IEEE Trans Nanobiosci 5(4):263-67 CrossRef
    5. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016-018 CrossRef
    6. Alireza V, Haleh M, Mohammad S, Farkhani SM, Zarghami N, Kouhi M, Akbarzadeh A, Davaran S (2012) Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett. doi:10.1186/1556-276X-7-480
    7. De Wild M, Berner S, Suzuki H, Ramoino L, Baratoff A, Jung TA (2003) Molecular assembly and self-assembly: molecular nanoscience for future technologies. Ann N Y Acad Sci 1006:291-05 CrossRef
    8. Zhang ZY, Oehler AEH, Resan B, Kurmulis S, Zhou KJ, Wang Q, Mangold M, Süedmeyer T, Keller U, Weingarten KJ, Hogg RA (2010) 1.55?μm InAs/GaAs quantum dots and high repetition rate quantum dot SESAM mode-locked laser. Nano Lett 10:1512-516 CrossRef
    9. Jiang W, Wang ZM, Dorogan VG, Mazur YI, Li S, Salamo GJ (2011) Insight into optical properties of strain-free quantum dot pairs. J Nanopart Res 13:947-52 CrossRef
    10. Yuechao J, Xiaoyong G, Jingxiao L, Yongsheng C, Jianpeng Z, Xinli L (2012) A novel method for PbS quantum dot synthesis. Mater Lett 72:116-18 CrossRef
    11. Vibin M, Vinayakan R, John A, Raji V, Rejiya CS, Abraham A (2011) Biokinetics and in vivo distribution behaviours of silica-coated cadmium selenide quantum dots. Biol Trace Elem Res 142:213-22 CrossRef
    12. Rzigalinski B, Strobl JS (2009) Cadmium-containing nanoparticles: perspectives on pharmacology and toxicology of quantum dots. Toxicol Appl Pharmacol 238(3):280-88 CrossRef
    13. Francoise MW, Dusica M (2013) Quantum dot cytotoxicity and ways to reduce it. Accounts Chem Res 46(3):672-80 CrossRef
    14. Driscoll KE, Maurer JK, Poynter J, Higgins J, Asquith T, Miller NS (1992) Stimulation of rat alveolar macrophage fibronectin release in a cadmium chloride model of lung injury and fibrosis. Toxicol Appl Pharmacol 116:30-7 CrossRef
    15. Falck FY Jr, Fine LJ, Smith RG, McClatchey KD, Annesley T, England B, Schork AM (1983) Occupational cadmium exposure and renal status. Am J Ind Med 4(4):541-49 CrossRef
    16. Xu M, Deng G, Liu S, Chen S, Cui D, Yang L, Wang Q (2010) Free cadmium ions released from CdTe-based nanoparticles and their cytotoxicity on / Phaeodactylum tricornutum. Metallomics 2:469-73 CrossRef
    17. Kirchner C, Liedl T, Kudera S, Pellegrino T, Munoz Javier A, Gaub HE, Stolzle S, Fertig N, Parak WJ (2005) Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett 5:331-38 CrossRef
    18. Yu RA, Chen X, Lu W (2001) Study on cadmium-induced hepatocellular apoptosis in rat. Wei Sheng Yan Jiu 30:271-72
    19. Tzirogiannis KN, Panoutsopoulos GI, Demonakou MD, Hereti RI, Alexandropoulou KN, Basayannis AC, Mykoniatis MG (2003) Time-course of cadmium-induced acute hepatotoxicity in the rat liver: the role of apoptosis. Arch Toxicol 77:694-01 CrossRef
    20. Habeebu SS, Liu J, Klaassen CD (1998) Cadmium-induced apoptosis in mouse liver. Toxicol Appl Pharmacol 149:203-09 CrossRef
    21. Hart BA, Lee CH, Shukla GS, Shukla A, Osier M, Eneman JD, Chiu JF (1999) Characterization of cadmium-induced apoptosis in rat lung epithelial cells: evidence for the participation of oxidant stress. Toxicology 133:43-8 CrossRef
    22. Li M, Kondo T, Zhao QL, Li FJ, Tanabe K, Arai Y, Zhou ZC, Kasuya M (2000) Apoptosis induced by cadmium in human lymphoma U937 cells through Ca2+-calpain and caspase-mitochondria. J Biol Chem 275:39702-9709 CrossRef
    23. Oh SH, Lee BH, Lim SC (2004) Cadmium induces apoptotic cell death in WI38 cells via caspase-dependent Bid cleavage and calpain mediated mitochondrial Bax cleavage by Bcl-2 independent pathway. Biochem Pharmacol 68:1845-855 CrossRef
    24. Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22:1360-361 CrossRef
    25. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5:415-18 CrossRef
    26. Oh SH, Lim SC (2006) A rapid and transient ROS generation by cadmium triggers apoptosis via caspase-dependent pathway in HepG2 cells and this is inhibited through N-acetylcysteine-mediated catalase upregulation. Toxicol Appl Pharmacol 212:212-23 CrossRef
    27. Poliandri AH, Cabilla JP, Velardez MO, Bodo CC, Duvilanski BH (2003) Cadmium induces apoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants. Toxicol Appl Pharmacol 190:17-4 CrossRef
    28. Shih CM, Ko WC, Wu JS, Wei YH, Wang LF, Chang EE, Lo TY, Cheng HH, Chen CT (2004) Mediating of caspase-independent apoptosis by cadmium through the mitochondria-ROS pathway in MRC-5 fibroblasts. J Cell Biochem 91:384-97 CrossRef
    29. Luo YH, Wu SB, Wei YH, Chen YC, Tsai MH, Ho CC, Lin SY, Yang CS, Lin P (2013) Cadmium-based quantum dot induced autophagy formation for cell survival via oxidative stress. Chem Res Toxicol 26(5):662-73 CrossRef
    30. Lovric J, Cho SJ, Winnik FM, Maysinger D (2005) Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death. Chem Biol 12:1227-234 CrossRef
    31. Hsu SH, Lin YY, Huang S, Lem KW, Nguyen DH, Lee DS (2013) Synthesis of water-dispersible zinc oxide quantum dots with antibacterial activity and low cytotoxicity for cell labeling. Nanotechnology. doi:10.1088/0957-4484/24/47/475102
    32. Buttke TM, Sandstrom PA (1994) Oxidative stress as a mediator of apoptosis. Immunol Today 15:7-0 CrossRef
    33. Li KG, Chen JT, Bai SS, Wen X, Song SY, Yu Q, Li J, Wang YQ (2009) Intracellular oxidative stress and cadmium ions release induce cytotoxicity of unmodified cadmium sulfide quantum dots. Toxicol in Vitro 23:1007-013 CrossRef
    34. Nguyen KC, Willmore WG, Tayabali AF (2013) Cadmium telluride quantum dots cause oxidative stress leading to extrinsic and intrinsic apoptosis in hepatocellular carcinoma HepG2 cells. Toxicology 306:114-23 CrossRef
    35. Naz?ro?lu M, Y?ld?z K, Tamtürk B, Erturan ?, Flores-Arce M (2012) Selenium and psoriasis. Biol Trace Elem Res 150(1-):3-
    36. Nel A, Xia T, M?dler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622-27 CrossRef
    37. Ben-Yoseph O, Ross BD (1994) Oxidation therapy: the use of a reactive oxygen species-generating enzyme system for tumour treatment. Br J Cancer 70:1131-135 CrossRef
    38. Wu YN, Yang LX, Shi XY, Li IC, Biazik JM, Ratinac KR, Chen DH, Thordarson P, Shieh DB, Braet F (2011) The selective growth inhibition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy. Biomaterials 32:4565-573 CrossRef
    39. Singh BR, Singh BN, Khan W, Singh HB, Naqvi AH (2012) ROS-mediated apoptotic cell death in prostate cancer LNCaP cells induced by biosurfactant stabilized CdS quantum dots. Biomaterials 33:5753-767 CrossRef
    40. Zhao MX, Ji LN, Mao ZW (2012) β-Cyclodextrin/glycyrrhizic acid functionalised quantum dots selectively enter hepatic cells and induce apoptosis. Chemistry 18:1650-658 CrossRef
    41. Putcha GV, Harris CA, Moulder KL, Easton RM, Thompson CB, Johnson EM Jr (2002) Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J Cell Biol 157:441-53 CrossRef
    42. Choi AO, Cho SJ, Desbarats J, Lovric J, Maysinger D (2007) Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells. J Nanobiotechnol. doi:10.1186/1477-3155-5-1
    43. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481-90 CrossRef
    44. Devadas S, Hinshaw JA, Zaritskaya L, Williams MS (2004) Fas stimulated generation of reactive oxygen species or exogenous oxidative stress sensitize cells to Fas-mediated apoptosis. Free Radical Biol Med 35:648-61 CrossRef
    45. Jayanthi S, Ordonez S, McCoy MT, Cadet JL (1999) Dual mechanism of Fas-induced cell death in neuroglioma cells: a role for reactive oxygen species. Brain Res Mol Brain Res 72:158-65 CrossRef
    46. Denning TL, Takaishi H, Crowe SE, Boldogh I, Jevnikar A, Ernst PB (2002) Oxidative stress induces the expression of Fas and Fas ligand and apoptosis in murine intestinal epithelial cell. Free Radical Biol Med 33:1641-650 CrossRef
    47. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129-132 CrossRef
    48. Crompton M (2000) Bax, Bid and the permeabilization of the mitochondrial outer membrane in apoptosis. Curr Opin Cell Biol 12:414-19 CrossRef
    49. Kong L, Zhang T, Tang M, Pu Y (2012) Apoptosis induced by cadmium selenide quantum dots in JB6 cells. J Nanosci Nanotechnol 12:8258-265 CrossRef
    50. Lamkanfi M, Kanneganti TD (2010) Caspase-7: a protease involved in apoptosis and inflammation. Int J Biochem Cell Biol 42:21-4 CrossRef
    51. Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth GJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847-51 CrossRef
    52. Amna T, Van Ba H, Vaseem M, Hassan MS, Khil MS, Hahn YB, Lee HK, Hwang IH (2013) Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment. Appl Microbiol Biotechnol 97:5545-553 CrossRef
    53. Zhang G, Shi L, Selke M, Wang X (2011) CdTe quantum dots with daunorubicin induce apoptosis of multidrug-resistant human hepatoma HepG2/ADM cells: in vitro and in vivo evaluation. Nanoscale Res Lett. doi:10.1186/1556-276X-6-418
    54. Chan WH, Shiao NH, Lu PZ (2006) CdSe quantum dots induce apoptosis in human neuroblastoma cells via mitochondrial-dependent pathways and inhibition of survival signals. Toxicol Lett 167(3):191-00 CrossRef
    55. Motohashi H, Yamamoto M (2004) Nrf2–Keap1 defines a physiologically important stress response mechanism. Trends Mol Med 10:549-56 CrossRef
    56. Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749-62 CrossRef
    57. Zhao YX, Lin KF (2011) Quantum dots enhance Cu2+-induced hepatic L02 cells toxicity: involvement of Nrf2. Toxicol Enviro Chem 93(4):715-21 CrossRef
    58. He X, Chen MG, Ma Q (2008) Activation of Nrf2 in defense against cadmium-induced oxidative stress. Chem Res Toxicol 21:375-83 CrossRef
    59. Davis RJ (2000) Signal transduction by the JNK group of MAP kinases. Cell 103(2):239-52 CrossRef
    60. Caraglia M, Marra M, Pelaia G, Maselli R, Caputi M, Marsico SA, Abbruzzese A (2005) Alpha-interferon and its effects on signal transduction pathways. J Cell Physiol 202:323-35 CrossRef
    61. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med 228:111-33
    62. Lu HY, Shiao NH, Chan WH (2006) CdSe quantum dots induce apoptosis via activation of JNK and PAK2 in a human osteoblast cell line. J Med Biol Eng 26:89-6
    63. Martin P, Pognonec P (2010) ERK and cell death: cadmium toxicity, sustained ERK activation and cell death. FEBS J 277:39-6 CrossRef
    64. Graham B, Gibson SB (2005) The two faces of NFkappaB in cell survival responses. Cell Cycle 4(10):1342-345 CrossRef
    65. Romoser AA, Chen PL, Berg JM, Seabury C, Ivanov I, Criscitiello MF, Sayes CM (2011) Quantum dots trigger immunomodulation of the NF-κB pathway in human skin cells. Mol Immunol 48:1349-359 CrossRef
    66. Beg AA, Baltimore D (1996) An essential role for NF-kappaB in preventing TNF alpha-induced cell death. Science 274:782-84 CrossRef
    67. Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis whil NF-kappaB activation prevents cell death. Cell 87:565-76 CrossRef
    68. Trincavell ML, Falleni A, Chelli B, Tuscano D, Costa B, Gremigni V, Lucacchini A, Martini C (2003) A(2A) adenosine receptor ligands and proinflammatory cytokines induce PC 12 cell death through apoptosis. Biochem Pharmacol 66:1953-962 CrossRef
    69. Nagy A, Steinbrück A, Gao J, Doggett N, Hollingsworth JA, Iyer R (2012) Comprehensive analysis of the effects of CdSe quantum dot size, surface charge, and functionalization on primary human lung cells. ACS Nano 6:4748-762 CrossRef
    70. Pu Y, Luo KQ, Chang DC (2002) A Ca2+ signal is found upstream of cytochrome c release during apoptosis in HeLa cells. Biochem Biophys Res Commun 299:762-69 CrossRef
    71. Liu X, Tang M, Zhang T, Hu Y, Zhang S, Kong L, Xue Y (2013) Determination of a threshold dose to reduce or eliminate CdTe-induced toxicity in L929 cells by controlling the exposure dose. PLoS One. doi:10.1371/journal.pone.0059359
    72. Horie M, Kato H, Fujita K, Endoh S, Iwahashi H (2012) In vitro evaluation of cellular response induced by manufactured nanoparticles. Chem Res Toxicol 25(3):605-19 CrossRef
    73. Yang B, Liu R, Hao X, Wu Y, Du J (2012) The interactions of glutathione-capped CdTe quantum dots with trypsin. Biol Trace Elem Res 146(3):396-01 CrossRef
    74. Qu G, Wang X, Wang Z, Liu S, Jiang G (2013) Cytotoxicity of quantum dots and graphene oxide to erythroid cells and macrophages. Nanoscale Res Lett. doi:10.1186/1556-276X-8-198
    75. Prasad BR, Mullins G, Nikolskaya N, Connolly D, Smith TJ, Gérard VA, Byrne SJ, Davies GL, Gun’ko YK, Rochev Y (2012) Effects of long-term exposure of gelatinated and non-gelatinated cadmium telluride quantum dots on differentiated PC12 cells. J Nanobiotechnol. doi:10.1186/1477-3155-10-4
    76. Yuan X, Liu Z, Guo Z, Ji Y, Jin M, Wang X (2014) Cellular distribution and cytotoxicity of graphene quantum dots with different functional groups. Nanoscale Res Lett. doi:10.1186/1556-276X-9-108
    77. Prasad BR, Nikolskaya N, Connolly D, Smith TJ, Byrne SJ, Gerard VA, Gun’ko YK, Rochev Y (2010) Long-term exposure of CdTe quantum dots on PC12 cellular activity and the determination of optimum non-toxic concentrations for biological use. J Nanobiotechnol. doi:10.1186/1477-3155-8-7
    78. Su Y, He Y, Lu H, Sai L, Li Q, Li W, Wang L, Shen P, Huang Q, Fan C (2009) The cytotoxicity of cadmium based, aqueous phase-synthesized, quantum dots and its modulation by surface coating. Biomaterials 30:19-5 CrossRef
    79. Tang M, Xing T, Zeng J, Wang H, Li C, Yin S, Yan D, Deng H, Liu J, Wang M, Chen J, Ruan DY (2008) Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons. Environ Health Perspect 116:915-22 CrossRef
    80. Wu J, Chen Q, Liu W, Zhang Y, Lin JM (2012) Cytotoxicity of quantum dots assay on a microfluidic 3D-culture device based on modeling diffusion process between blood vessels and tissues. Lab Chip 12:3474-480 CrossRef
    81. Wu T, Tang M (2014) Toxicity of quantum dots on respiratory system. Inhal Toxicol 26(2):128-39. doi:10.3109/08958378.2013.871762 CrossRef
  • 作者单位:Qingling Zhan (1) (2)
    Meng Tang (1) (2)

    1. Key Laboratory of Environmental Medicine and Engineering, Ministry of Education; School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, 210009, Jiangsu Province, People’s Republic of China
    2. Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, 210009, Jiangsu Province, People’s Republic of China
  • ISSN:1559-0720
文摘
Recently, quantum dots (QDs) have been widely applied in biological and biomedical fields such as cell labeling, living tissue imaging, and photodynamic therapy because of their superior optical properties. Meanwhile, the potential biological negative effects and/or toxic effects of QDs have become increasingly important, especially the cytotoxicity caused by QDs. One of the common cytotoxicity when living organisms are treated with QD is apoptosis, where many attempts have been made to explain the mechanisms of apoptosis caused by QDs-use. One of the mechanisms is the production of cadmium ion (Cd2+) and reactive oxygen species (ROS). Excess generation of ROS will result in oxidative stress that would mediate apoptosis. Furthermore, the activation of cell death receptors and mitochondria-dependent such as B cell lymphoma 2 (Bcl-2) family and the caspase family could onset apoptosis. Signal transduction such as some classical signal pathways of PI3K-AKT, NF-E2-related factor 2 (Nrf2)-antioxidant response element (ARE), mitogen-activated protein kinases (MAPKs), and nuclear factor kappa B (NF-κB) also plays an important role in the regulation of apoptosis. Several ways to reduce the apoptotic rate have been introduced, such as surface modification, controlling, the dose, size, and exposure time of QDs as well as using antioxidants or inhibitors. In this review, we attempted to review the most recent findings associated with apoptosis caused by QDs so as to provide some guidelines for a safer QD application in the future.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700