用户名: 密码: 验证码:
Finding the Reactive Electron in Paramagnetic Systems: A Critical Evaluation of Accuracies for EPR Spectroscopy and Density Functional Theory Using 1,3,5-Triphenyl Verdazyl Radical as a Testcase
详细信息    查看全文
  • 作者:Jessica Barilone (1)
    Frank Neese (1)
    Maurice van Gastel (1)

    1. Max Planck Institute for Chemical Energy Conversion
    ; Stiftstrasse 34-36 ; 45470 ; M眉lheim an der Ruhr ; Germany
  • 刊名:Applied Magnetic Resonance
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:46
  • 期:2
  • 页码:117-139
  • 全文大小:624 KB
  • 参考文献:1. A.J. Stone, Proc. R. Soc. Lond. Ser. A 271, 424鈥?34 (1963) CrossRef
    2. A. Schweiger, G. Jeschke, / Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, Oxford, 2001)
    3. A. Carrington, A.D. McLachlan, / Introduction to Magnetic Resonance (Harper & Row, New York, 1969)
    4. G.E. Pake, T.L. Estle, / The Physical Principles of Electron Paramagnetic Resonance (Benjamin-Cummings Publishing Company, Menlo Park, 1973)
    5. J.E. Harriman, / Theoretical Foundations of Electron Spin Resonance (Academic Press, New York, 1978)
    6. R. McWeeny, / Spins in Chemistry (Dover Publications Inc., New York, 2013)
    7. P.M.W. Gill, in / Encyclopedia of Computational Chemistry, ed. by P. von Ragu茅 Schleyer (Wiley, Chichester, 1998), pp. 678鈥?89
    8. F. Neese, Wiley Interdiscip. Rev. Comput. Mol. Sci. 2, 73鈥?8 (2012)
    9. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347鈥?363 (1993) CrossRef
    10. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Peterson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishuda, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Kelene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyav, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, in (Gaussian Inc, Wallingford CT, 2004)
    11. M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. Phys. Commun. 181, 1477鈥?489 (2010) CrossRef
    12. Turbomole GmbH, Turbomole, available from http://www.turbomole.com, in Turbomole GmbH, Mannheim (2014)
    13. H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Marnby, M. Sch眉tz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K.R. Shamasundar, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hesselmann, G. Hetzer, T. Hrenar, G. Jansen, C. K枚ppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, D.P. Nicklass, D.P. O鈥橬eill, P. Palmieri, D. Peng, K. Pfl眉ger, R. Pitzer, M. Reiher, T. Shiozaki, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, MOLPRO, a package of ab initio programs, in (2012)
    14. F. Aquilante, L. De Vico, N. Ferr茅, G. Ghigo, P.-A. Malmqvist, P. Neogr谩dy, T.B. Pedersen, M. Pitonak, M. Reiher, B.O. Roos, L. Serrano-Andr茅s, M. Urban, V. Veryazov, R. Lindh, J. Comput. Chem. 31, 224鈥?47 (2010) CrossRef
    15. SCM Scientific Computing and Modelling, ADF, in / SCM, Theoretical Chemistry (Vrije Universiteit Amsterdam, the Netherlands, 2013)
    16. R. Kuhn, H. Trischmann, Monatsh. Chem. 95, 457鈥?79 (1963) CrossRef
    17. The Mathworks GmbH, MATLAB and Statistics Toolbox, in The Mathworks Inc, Natic, Massachusetts (2012)
    18. S. Stoll, A. Schweiger, J. Magn. Reson. 178, 42鈥?5 (2006) CrossRef
    19. C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37, 785鈥?89 (1988) CrossRef
    20. F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297鈥?305 (2005) CrossRef
    21. R. Izsak, F. Neese, J. Chem. Phys. 135, 144105 (2011) CrossRef
    22. J.P. Perdew, Phys. Rev. B 33, 8822鈥?824 (1986) CrossRef
    23. A.D. Becke, Phys. Rev. A 38, 3098鈥?100 (1988) CrossRef
    24. W. Kutzelnigg, U. Fleischer, M. Schindler, / The IGLO-Method: ab initio Calculation and Interpretation of NMR Chemical Shifts and Magnetic Susceptibilities (Springer-Verlag, Heidelberg, 1990)
    25. F. Neese, J. Chem. Phys. 118, 3939鈥?948 (2003) CrossRef
    26. F. Neese, J. Phys. Chem. A 105, 4290鈥?299 (2001) CrossRef
    27. H.M. McConnell, D.B. Chesnut, J. Chem. Phys. 28, 107鈥?17 (1958) CrossRef
    28. G.K. Woodgate, / Elementary Atomic Structure (Oxford University Press, Oxford, 1983)
    29. A. Szabo, N.S. Ostlund, / Modern Quantum Chemistry. Introduction to Advanced Electronic Structure Theory (McGraw-Hill, New York, 1989)
    30. T. Yonezawa, T. Kawamura, H. Kato, J. Chem. Phys. 50, 3482鈥?492 (1969) CrossRef
    31. Bruker Biospin GmbH, Bruker EPR/ENDOR frequency table, in Bruker Biospin GmbH (2013)
    32. P.W. Atkins, / Molecular Quantum Mechanics (Oxford University Press, Oxford, 2005)
    33. G.A. Zhurko, Chemcraft v. 1.7, available at www.chemcraftprog.org, in (2014)
    34. R. Dennington, T. Keith, J.M. Millam, Gaussview, in Shawnee Mission KS (2009)
    35. W.J. Hehre, R. Ditchfie, J.A. Pople, J. Chem. Phys. 56, 2257鈥?261 (1972) CrossRef
    36. P.C. Harihara, J.A. Pople, Theoret. Chim. Acta 28, 213鈥?22 (1973) CrossRef
    37. L. Hermosilla, J.M. Garcia de la Vega, C. Sieiro, P. Calle, J. Chem. Theory Comput. 7, 169鈥?79 (2011) CrossRef
    38. T.H. Dunning, J. Chem. Phys. 90, 1007鈥?023 (1989) CrossRef
    39. J.M. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003) CrossRef
    40. A.D. Becke, J. Chem. Phys. 98, 5648鈥?652 (1993) CrossRef
    41. L. Hermosilla, P. Calle, J.M.G. de la Vega, C. Sieiro, J. Phys. Chem. A 109, 1114鈥?124 (2005) CrossRef
    42. L. Hermosilla, P. Calle, J.M.G. de la Vega, C. Sieiro, J. Phys. Chem. A 110, 13600鈥?3608 (2006) CrossRef
    43. H.F. Hameka, A.G. Turner, J. Magn. Reson. 64, 66鈥?5 (1985)
    44. N. Rega, M. Cossi, V. Barone, J. Chem. Phys. 105, 11060鈥?1067 (1996) CrossRef
    45. V. Barone, J. Phys. Chem. 99, 11659鈥?1666 (1995) CrossRef
    46. V. Barone, in / Recent Advances in Density Functional Methods, Part I, ed. by D.P. Chong (World Scientific Publishing Company, Singapore, 1996)
    47. T. Enevoldsen, J. Oddershede, S.P.A. Sauer, Theor. Chem. Acc. 100, 275鈥?84 (1998) CrossRef
    48. P.F. Provasi, G.A. Aucar, S.P.A. Sauer, J. Chem. Phys. 115, 1324鈥?334 (2001) CrossRef
    49. R.A. Kendall, T.H. Dunning, R.J. Harrison, J. Chem. Phys. 96, 6796鈥?806 (1992) CrossRef
    50. Y. Zhao, D.G. Truhlar, Theor. Chem. Acc. 120, 215鈥?41 (2008) CrossRef
    51. V.N. Staroverov, G.E. Scuseria, J.M. Tao, J.P. Perdew, J. Chem. Phys. 119, 12129鈥?2137 (2003) CrossRef
    52. V.N. Staroverov, G.E. Scuseria, J.M. Tao, J.P. Perdew, J. Chem. Phys. 121, 11507 (2004) CrossRef
    53. Y.-S. Lin, G.-D. Li, S.-P. Mao, J.-D. Chai, J. Chem. Theory Comput. 9, 263鈥?72 (2013) CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
  • 出版者:Springer Wien
  • ISSN:1613-7507
文摘
One of the biggest challenges in studying catalytic reactions is characterizing intermediate states and identifying reaction pathways. Oftentimes, intermediate states with unpaired electrons are formed which provide an opportunity to study the compound via electron paramagnetic resonance (EPR). Combining EPR with density functional theory (DFT) represents a powerful synergistic approach to accomplish these goals. Once the catalytic intermediates and reaction pathway are known, rate-limiting steps critical to parameters like overpotential and turnover number may be identified and eliminated. In this study 1,3,5-triphenyl verdazyl is examined using continuous-wave-EPR, electron nuclear double resonance and DFT as an instructive example of how theory and experiment can complement each other to find the reactive electron. The methods and concomitant analysis have been presented in didactic fashion and with emphasis on the strengths and weaknesses of the methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700