用户名: 密码: 验证码:
Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger
详细信息    查看全文
  • 作者:Lu Wang (1) (2)
    Jianhua Zhang (1) (2)
    Zhanglei Cao (1) (2)
    Yajun Wang (1) (2)
    Qiang Gao (1) (2) (3)
    Jian Zhang (1) (2) (3)
    Depei Wang (1) (2) (3)

    1. Key Laboratory of Industrial Fermentation Microbiology
    ; Ministry of Education ; Tianjin ; 300457 ; P. R. China
    2. College of Biotechnology
    ; Tianjin University of Science & Technology ; Tianjin ; 300457 ; P. R. China
    3. Tianjin Key Laboratory of Industrial Microbiology
    ; Tianjin ; 300457 ; P. R. China
  • 关键词:Citric acid ; Aspergillus niger ; Oxidative phosphorylation inhibitor ; Uncoupler of oxidative phosphorylation ; Energy metabolism
  • 刊名:Microbial Cell Factories
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:14
  • 期:1
  • 全文大小:1,141 KB
  • 参考文献:1. Assimopoulou AN, Boskou D, Papageorgiou VP. Antioxidant activities of alkannin, shikonin and / Alkanna tinctoria root extracts in oil substrates. Food Chem. 2004;87:433鈥?. CrossRef
    2. Soccol CR, Vandenberghe LPS, Rodrigues C, Pandey A. New perspectives for citric acid production and application. Food Technol Biotechnol. 2006;44(2):141鈥?.
    3. Zahorsky B. U.S. Patent 1913; 1065358.
    4. Currie JN. The citric acid fermentation of / Aspergillus niger. J Biol Chem. 1917;31:15鈥?7.
    5. Wolschek MF, Kubicek CP. Biochemistry of citric acid accumulation by / Aspergillus niger. In: Kristiansen B, Mattey M, Linden J, editors. Citric acid biotechnology. London: Taylor Francis Ltd; 1999.
    6. Ruijter GJG, Kubicek CP, Visser J. Production of organic acids by fungi. Indust Appl. 2002;10:213鈥?0. CrossRef
    7. Karaffa L, Kubicek CP. / Aspergillus niger citric acid accumulation: do we understand this well working black box? Appl Microbiol Biotechnol. 2003;61(3):189鈥?6. CrossRef
    8. Torres NV. Modeling approach to control of carbohydrate metabolism during citric acid production by / Aspergillus niger: I. Model definition and stability of the steady state. Biotechnol Bioeng. 1994;44:104鈥?1. CrossRef
    9. Torres NV. Modeling approach to control of carbohydrate metabolism during citric acid production by / Aspergillus niger: II. Sensitivity analysis. Biotechnol Bioeng. 1994;44:112鈥?. CrossRef
    10. Habison A, Kubicek CP, R枚hr M. Phosphofructokinase as a regulatory enzyme in citric acid producing / Aspergillus niger. FEMS Microbiol Lett. 1979;5:39鈥?2. CrossRef
    11. Vankuyk PA, Diderich JA, MacCabe AP, Hererro O, Ruijter GJG, Visser J. / Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. Biochem J. 2004;379:375鈥?3. CrossRef
    12. Schmid A, Dordick JS, Hauer B, Kiener A, Wubbolts M, Witholt B. Industrial biocatalysis today and tomorrow. Nature. 2001;409:258鈥?8. CrossRef
    13. Larsson C, Nilsson A, Blomberg A, Gustafsson L. Glycolytic flux is conditionally correlated with ATP concentration in / Saccharomyces cerevisiae: a chemostat study under carbon- or nitrogen-limiting conditions. J Bacteriol. 1997;179(23):7243鈥?0.
    14. Thomas S, Fell DA. A control analysis exploration of the role of ATP utilisation in glycolytic-flux control and glycolytic-metabolite-concentration regulation. Eur J Biochem. 1998;258(3):956鈥?7. CrossRef
    15. Vemuri GN, Eiteman MA, McEwen JE, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in / Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 2007;104(7):2402鈥?. CrossRef
    16. Neves AR, Ventura R, Mansour N, Shearman C, Gasson MJ, Maycock C, et al. Is the glycolytic flux in / Lactococcus lactis primarily controlled by the redox charge? Kinetic of NAD+ and NADH pools determined in vivo by 13C NMR. J Biol Chem. 2002;277(31):28088鈥?8. CrossRef
    17. Jensen PR, Michelsen O. Carbon and energy metabolism of atp mutants of / Escherichia coli. J Bacteriol. 1992;174(23):7635鈥?1.
    18. Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. The glycolytic flux in / Escherichia coli is controlled by the demand for ATP. J Bacteriol. 2002;184(14):3909鈥?6. CrossRef
    19. Liu LM, Li Y, Li HZ, Chen J. Significant increase of glycolytic flux in / Torulopsis glabrata by inhibition of oxidative phosphorylation. FEMS Yeast Res. 2006;6(8):1117鈥?9. CrossRef
    20. Abo-Khatwa AN, Al-Robai AA, Al-Jawhari DA. Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria. Nat Toxins. 1996;4:96鈥?02. CrossRef
    21. Dietzler DN, Leckie MP, Magnani JL, Sughrue MJ, Bergstein PE. Evidence for the coordinate control of glycogen synthesis, glucose utilization, and glycolysis in / Escherichia coli. II. Quantitative correlation of the inhibition of glycogen synthesis and the stimulation of glucose utilization by 2,4-dinitrophenol with the effects on the cellular levels of glucose 6-phosphate, fructose 1,6-diphosphate, and total adenylates. J Biol Chem. 1975;250(18):7195鈥?03.
    22. Day DA, Wiskich JT. Regulation of alternative oxidase activity in higher plants. J Bioenerg Biomembr. 1995;27:379鈥?5. CrossRef
    23. Vanlerberghe GC, McIntosh L. Alternative oxidase: from gene to function. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:703鈥?4. CrossRef
    24. Kirimura K, Hirowatari Y, Usami S. Alterations of respiratory systems in / Aspergillus niger under the conditions of citric acid fermentation. Agric Biol Chem. 1987;51:1299鈥?03. CrossRef
    25. Edwards DL, Kwiecinski F. Altered mitochondrial respiration in a chromosomal mutant of / Neurospora crassa. J Bacteriol. 1973;116(2):610鈥?.
    26. Edwards DL, Rosenberg E, Maronev PA. Induction of cyanide-resistant respiration in / Neurospora crassa. J Biol Chem. 1974;249:3551鈥?.
    27. Minagawa N, Yoshimoto A. The induction of cyanide-resistant respiration in / Hansenula anomala. J Biothem. 1987;101(5):1141鈥?.
    28. Minagawa N, Sakajo S, Komiyama T, Yoshimoto A. A 36-kDa mitochondrial protein is responsible for cyanide-resistant respiration in / Hansenula anomala. FEBS Lett. 1990;264:149鈥?2. CrossRef
    29. Hattori T, Kino K, Kirimura K. Regulation of alternative oxidase at the transcription stage in / Aspergillus niger under the conditions of citric acid production. Curr Microbiol. 2009;58(4):321鈥?. CrossRef
    30. Kubicek CP, Zehentgruber O, EI-Kalak H, R枚hr M. Regulation of citric acid production by oxygen:Effect of dissolve oxygen tension on adenylate levels and respairation in / Aspergillus niger. Eur J Appl Microbiol Biotechnol. 1980;9:101鈥?5. CrossRef
    31. Pr枚mper C, Schneider R, Weiss H. The role of the proton-pumping and alternative respiratory chain NADH: ubiquinone oxidoreductases in overflow catabolism of Aspergillus niger. Eur J Biochem. 1993;216:223鈥?0. CrossRef
    32. Kirimura K, Matsui T, Sugano S, Usami S. Enhancement and repression of cyanide-insensitive respiration in / Aspergillus niger. FEMS Microbiol Lett. 1996;141:251鈥?. CrossRef
    33. Atlas RM. Handbook of Microbiological Media. 2nd ed. CRC Pr I Llc. 1997; 283鈥?4.
    34. Hu RH, Lin L, Liu TJ, Ouyang PK, He BH, Liu SJ. Reducing sugar content in Hemicellulose hydrolylase by DNS method: a revisit. J Biobased Mater Biol. 2008;2:156鈥?1. CrossRef
    35. Menzel K, Ahrens K, Zeng AP, Deckwer WD. Kinetic, dynamic, and pathway studies of glycerol metabolism by / Klebsiella pneumoniae in anaerobic continuous culture: IV. Enzymes and fluxes of pyruvate metabolism. Biotechnol Bioeng. 1998;60(5):617鈥?6. CrossRef
    36. Du CY, Yan H, Zhang YP, Li Y, Cao Z. Use oxidoreduction potential as an indicator to regulate 1,3-propanediol fermentation by / Klebsiella pneumoniae. Appl Microbiol Biotechnol. 2006;69:554鈥?3. CrossRef
    37. Lilius EM, Multanen VM, Toivonen V. Quantitative extraction and estimation of intracellular nicotinamid dinucleotides in / Escherichia coli. Anal Biochem. 1979;99(1):22鈥?. CrossRef
    38. Stanley PE. Extraction of adenosine triphosphate from microbial and somatic acid. Methods Enzymol. 1986;133:14鈥?2. CrossRef
    39. Miseta A, T枚k茅s-f眉zesi M, Aiello DP, Bedwell DM. A / Saccharomyces cerevisiae mutant unable to convert glucose to glucose-6-phosphate accumulates excessive glucose in the endoplasmic reticulum due to core oligosaccharide trimming. Eukaryot Cell. 2003;2(3):534鈥?1. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Applied Microbiology
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1475-2859
文摘
Background The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. Results By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L-1 antimycin A or 0.1 mg L-1 DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L-1 and 135.78 g L-1 by adding 0.2 mg L-1 antimycin A or 0.1 mg L-1 DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. Conclusions The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of intracellular ATP can accelerate glycolysis and the TCA cycle to enhance citric acid yield.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700