用户名: 密码: 验证码:
Photocatalytic properties of titania/porous carbon fibers composites prepared by self-template method
详细信息    查看全文
  • 作者:Feng Teng (1)
    Guozhi Zhang (1)
    Youqing Wang (1)
    Caitian Gao (1)
    Zhenxing Zhang (1)
    Erqing Xie (1)

    1. School of Physical Science and Technology
    ; Lanzhou University ; Lanzhou ; 730000 ; People鈥檚 Republic of China
  • 刊名:Journal of Materials Science
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:50
  • 期:7
  • 页码:2921-2931
  • 全文大小:2,402 KB
  • 参考文献:1. Gomathi Devi L, Girish Kumar S, Mohan Reddy K, Munikrishnappa C (2009) Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. J Hazard Mater 164:459鈥?67 CrossRef
    2. Tang J, Chen S, Xu Y, Zhong W, Ma M, Wang Z (2012) Calibration and field performance of triolein embedded acetate membranes for passive sampling persistent organic pollutants in water. Environ Pollut 164:158鈥?63 CrossRef
    3. El Saliby I, Erdei L, Kim JH, Shon HK (2013) Adsorption and photocatalytic degradation of methylene blue over hydrogen-titanate nanofibres produced by a peroxide method. Water Res 47:4115鈥?125 CrossRef
    4. Auta M, Hameed BH (2012) Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue. Chem Eng J 198鈥?99:219鈥?27 CrossRef
    5. Machida M, Fotoohi B, Amamo Y, Ohba T, Kanoh H, Mercier L (2012) Cadmium(II) adsorption using functional mesoporous silica and activated carbon. J Hazard Mater 221鈥?22:220鈥?27 CrossRef
    6. Wu Z, Cheng Z, Ma W (2012) Adsorption of Pb(II) from glucose solution on thiol-functionalized cellulosic biomass. Bioresour Technol 104:807鈥?09 CrossRef
    7. Buchel R, Pratsinis SE, Baiker A (2012) Mono- and bimetallic Rh and Pt NSR-catalysts prepared by controlled deposition of noble metals on support or storage component. Appl Catal B Environ 113鈥?14:160鈥?71 CrossRef
    8. Celorrio V, Montes de Oca MG, Plana D, Moliner R, Ferm铆n DJ, L谩zaro MJ (2012) Electrochemical performance of Pd and Au鈥揚d core鈥搒hell nanoparticles on surface tailored carbon black as catalyst support. Int J Hydrogen Energy 37:7152鈥?160 CrossRef
    9. Ben-Moshe T, Dror I, Berkowitz B (2009) Oxidation of organic pollutants in aqueous solutions by nanosized copper oxide catalysts. Appl Catal B Environ 85:207鈥?11 CrossRef
    10. Yan S, Wang J, Gao H et al (2013) Zinc gallogermanate solid solution: a novel photocatalyst for efficiently converting CO2 into solar fuels. Adv Funct Mater 23:1839鈥?845 CrossRef
    11. Colmenares JC, Luque R (2014) Heterogeneous photocatalytic nanomaterials: prospects and challenges in selective transformations of biomass-derived compounds. Chem Soc Rev 43:765鈥?78 CrossRef
    12. Joo JB, Lee I, Dahl M, Moon GD, Zaera F, Yin Y (2013) Controllable synthesis of mesoporous TiO2 hollow shells: toward an efficient photocatalyst. Adv Funct Mater 23:4246鈥?254 CrossRef
    13. Wang Y, Zhang Y-Y, Tang J et al (2013) Simultaneous etching and doping of TiO2 nanowire arrays for enhanced photoelectrochemical performance. ACS Nano 7:9375鈥?383 CrossRef
    14. He Y, Basnet P, Murph SE, Zhao Y (2013) Ag nanoparticle embedded TiO2 composite nanorod arrays fabricated by oblique angle deposition: toward plasmonic photocatalysis. ACS Appl Mater Interfaces 5:11818鈥?1827 CrossRef
    15. Teng F, Li M, Gao C et al (2014) Preparation of black TiO2 by hydrogen plasma assisted chemical vapor deposition and its photocatalytic activity. Appl Catal B Environ 148鈥?49:339鈥?43 CrossRef
    16. Carneiro JO, Azevedo S, Fernandes F et al (2014) Synthesis of iron-doped TiO2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties. J Mater Sci 49:7476鈥?488. doi:10.1007/s10853-014-8453-3 CrossRef
    17. Lee D, Kim H-B, Yu S, Kim HJ, Lee WI, Jang D-J (2014) Facile fabrication of anatase TiO2 nanotube arrays having high photocatalytic and photovoltaic performances by anodization of titanium in mixed viscous solvents. J Mater Sci 49:3414鈥?422. doi:10.1007/s10853-014-8051-4 CrossRef
    18. Wang B, Li C, Cui H, Zhang J, Zhai J, Li Q (2014) Shifting mechanisms in the initial stage of dye photodegradation by hollow TiO2 nanospheres. J Mater Sci 49:1336鈥?344. doi:10.1007/s10853-013-7817-4 CrossRef
    19. Cheng X, Liu H, Chen Q, Li J, Wang P (2014) Preparation of graphene film decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Carbon 66:450鈥?58 CrossRef
    20. Chen P, Gu L, Xue X, Li M, Cao X (2010) Engineering the growth of TiO2 nanotube arrays on flexible carbon fibre sheets. Chem Commun 46:5906鈥?908 CrossRef
    21. Guo W, Zhang F, Lin C, Wang ZL (2012) Direct growth of TiO2 nanosheet arrays on carbon fibers for highly efficient photocatalytic degradation of methyl orange. Adv Mater 24:4761鈥?764 CrossRef
    22. Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-TiO2 composites. Adv Mater 21:2233鈥?239 CrossRef
    23. Xing M, Qi D, Zhang J et al (2012) Super-hydrophobic fluorination mesoporous MCF/TiO2 composite as a high-performance photocatalyst. J Catal 294:37鈥?6 CrossRef
    24. Daranyi M, Csesznok T, Kukovecz A et al (2011) Layer-by-layer assembly of TiO2 nanowire/carbon nanotube films and characterization of their photocatalytic activity. Nanotechnology 22:195701 CrossRef
    25. Yuan R, Guan R, Zheng J (2005) Effect of the pore size of TiO2-loaded activated carbon fiber on its photocatalytic activity. Scr Mater 52:1329鈥?334 CrossRef
    26. Shi J, Zheng J, Wu P, Ji X (2008) Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size. Catal Commun 9:1846鈥?850 CrossRef
    27. Wu X, Yin S, Dong Q et al (2013) Synthesis of high visible light active carbon doped TiO2 photocatalyst by a facile calcination assisted solvothermal method. Appl Catal B Environ 142鈥?43:450鈥?57 CrossRef
    28. Zhang G, Teng F, Wang Y et al (2013) Preparation of carbon鈥揟iO2 nanocomposites by a hydrothermal method and their enhanced photocatalytic activity. RSC Adv 3:24644鈥?4649 CrossRef
    29. Zhang G, Teng F, Zhao C et al (2014) Enhanced photocatalytic activity of TiO2/carbon@TiO2 core鈥搒hell nanocomposite prepared by two-step hydrothermal method. Appl Surf Sci 311:384鈥?90 CrossRef
    30. Imae T, Muto K, Ikeda S (1991) The pH dependence of dispersion of TiO2 particles in aqueous surfactant solutions. Colloid Polym Sci 269:43鈥?8 CrossRef
    31. Barb茅 CJ, Arendse F, Comte P et al (1997) Nanocrystalline titanium oxide electrodes for photovoltaic applications. J Am Ceram Soc 80:3157鈥?171 CrossRef
    32. Spurr RA, Myers H (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal Chem 29:760鈥?62 CrossRef
    33. Zhang W, He Y, Zhang M, Yin Z, Chen Q (2000) Raman scattering study on anatase TiO2 nanocrystals. J Phys D Appl Phys 33:912鈥?16 CrossRef
    34. Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575鈥?578 CrossRef
    35. Hung M-C, Yuan S-Y, Hung C-C, Cheng C-L, Ho H-C, Ko T-H (2014) Effectiveness of ZnO/carbon-based material as a catalyst for photodegradation of acrolein. Carbon 66:93鈥?04 CrossRef
    36. Zheng ZQ, Zhou XP, Damjanovic D (2013) Reduction of Ti4+ to Ti3+ in boron-doped BaTiO3 at very low temperature. J Am Ceram Soc 96:3504鈥?510 CrossRef
    37. Lin Y-T, Weng C-H, Lin Y-H, Shiesh C-C, Chen F-Y (2013) Effect of C content and calcination temperature on the photocatalytic activity of C-doped TiO2 catalyst. Sep Purif Technol 116:114鈥?23 CrossRef
    38. Nakamura I, Negishi N, Kutsuna S, Ihara T, Sugihara S, Takeuchi K (2000) Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal. J Mol Catal A: Chem 161:205鈥?12 CrossRef
    39. Long J, Chang H, Gu Q et al (2014) Gold-plasmon enhanced solar-to-hydrogen conversion on the 001 facets of anatase TiO2 nanosheets. Energy Environ Sci 7:973鈥?77 CrossRef
    40. Hsiao Y-C, Wu T-F, Wang Y-S, Hu C-C, Huang C (2014) Evaluating the sensitizing effect on the photocatalytic decoloration of dyes using anatase-TiO2. Appl Catal B Environ 148鈥?49:250鈥?57 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
Photocatalytic degradation is one of the most popular routes applied in the wastewater treatments. But the most used nanoparticle photocatalysts have a serious drawback that the particles are not easy to precipitate and recover from water, which seriously hinder its applications. In this study, titania/porous carbon fibers composite prepared by a simple self-template method with micro-meter long carbon fibers and titania nanoparticles as precursors was investigated to solve these issues. The obtained composite can precipitate from the solution easily, which is the major reason that it can be used in actual applications. We found that the titania particles, as catalysts, could enhance the reaction between carbon fibers and oxygen during the calcinations process, and as a template, would determine the size and position of the pores on the fibers surface simultaneously. Due to the unique porous structure, the titania/porous carbon fibers composite shows considerable adsorption and high photocatalytic activity. Combining the advantages of titania and carbon fibers, the composite can be also applied in many other fields, such as water splitting for hydrogen and lithium ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700