用户名: 密码: 验证码:
Effects of aspect ratio on flapping wing aerodynamics in animal flight
详细信息    查看全文
  • 作者:Jun-Jiang Fu (1)
    Csaba Hefler (1)
    Hui-He Qiu (1)
    Wei Shyy (1)

    1. Department of Mechanical and Aerospace Engineering
    ; The Hong Kong University of Science & Technology ; Clear Water Bay ; Kowloon ; Hong Kong SAR ; China
  • 关键词:Aspect ratio ; Aerodynamics ; Leading edge vortex ; Flapping wing
  • 刊名:Acta Mechanica Solida Sinica
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:30
  • 期:6
  • 页码:776-786
  • 全文大小:1,055 KB
  • 参考文献:1. Shyy, W., Aono, H., Chimakurthi, S.K., et al.: Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46, 284鈥?27 (2010) CrossRef
    2. Zhang, Y.L., Wu, J.H., Sun, M.: Lateral dynamic flight stability of hovering insects: Theory vs. numerical simulation. Acta Mechanica Sinica 28, 221鈥?31 (2012) CrossRef
    3. Paranjape, A.A., Dorothy, M.R., Chung, S.J., et al.: A flight mechanics-centric review of bird-scale flapping flight. Int J. of Aeronautical & Space Sci. 13, 267鈥?81 (2012) CrossRef
    4. Shyy, W., Lian, Y., Tang, J., et al.: Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press, New York (2008)
    5. Keennon, M., Klingebiel, K., Won, H., et al.: Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In: Proc. of 50th AIAA Aerospace Sciences Meeting (2012)
    6. Pornsin-Sirirak, T.N., Tai, Y.C., Ho, C.M., et al.: Microbat: A palm-sized electrically powered ornithopter. In: Proceedings of NASA/JPL Workshop on Biomorphic Robotics, Pasadena, CA, 14鈥?7 (2001)
    7. Wood, R.J.: The first takeoff of a biologically inspired at-scale robotic insect. IEEE Trans. Rob. 24, 341鈥?47 (2008) CrossRef
    8. Lentink, D., Jongerius, S.R., Bradshaw, N.L.: The Scalable Design of Flapping Micro-air Vehicles Inspired by Insect Flight. Flying Insects and Robots, Springer Verlag, Berlin (2009)
    9. Ristroph, L., Childress, S.: Stable hovering of a jellyfish-like flying machine. J. R. Soc. Interface 11, 20130992 (2014) CrossRef
    10. Muniappan, A., Baskar, V., Duriyanandhan, V.: Lift and thrust characteristics of flapping wing micro air vehicle (MAV). AIAA Paper 2005-1055 (2005)
    11. Luo G.Y, Sun M.: The effects of corrugation and wing plan-form on the aerodynamic force production of sweeping model insect wings. Acta Mech. Sinica 21, 531鈥?41 (2005) CrossRef
    12. Carr, Z.R., Chen, C., Ringuette, M.J.: Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp. Fluids 54, 1444 (2013) CrossRef
    13. Garmann, D., Visbal, M.: Dynamics of revolving wings for various aspect ratios. J. Fluid Mech. 748, 932鈥?56 (2014) CrossRef
    14. Pennycuick, C.J.: Modelling the Flying Bird. Academic Press, New York (2008)
    15. Richardson, P.L.: How do albatrosses fly around the world without flapping their wings? Progress in Oceanography 88, 46鈥?8 (2011) CrossRef
    16. Ellington, C.P.: The aerodynamics of hovering insect flight II. Morphological parameters. Phil. Trans. R. Soc. Lond. B 305, 17鈥?0 (1984) CrossRef
    17. Combes, S.A., Rundle, D.E., Iwasaki, J.M., et al.: Linking biomechanics and ecology through predator-prey interactions: Flight performance of dragonflies and their prey. J. Exp. Bio. 215, 903鈥?13 (2012) CrossRef
    18. Nanag, M., Nguyen, Q.V., Hoon, C.P.: Effect of outer wing separation on lift and thrust generation in a flapping wing system. Bioinsp. Biomim. 6, 1鈥?0 (2011)
    19. Baik, Y.S., Bernal, L.P., Granlund, K., et al.: Unsteady force generation and vortex dynamics of pitching and plunging aerofoils. J. Fluid Mech. 709, 37鈥?8 (2012) CrossRef
    20. Huang, H., Sun, M.: Forward flight of a model butterfly: Simulation by equations of motion coupled with the navierstokes equations. Acta Mechanica Sinica 28, 1590鈥?601 (2012) CrossRef
    21. Maybury, W.J., Lehmann, F.O.: The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J. Exp. Bio. 207, 4707鈥?726 (2004) CrossRef
    22. Sun, M., Lan, S.L.: A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. J. Exp. Bio. 207, 1887鈥?901 (2004) CrossRef
    23. Wang, Z.J., Russell, D.: Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys. Rev. Lett. 99, 148101 (2007) CrossRef
    24. Wakeling, J.M., Ellington, C.P.: Dragonfly flight III. Lift and power requirements. J. Exp. Bio. 200, 543鈥?00 (1997)
    25. Usherwood, J.R., Lehmann, F.O.: Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J. R. Soc. Interface 5, 1303鈥?307 (2008) CrossRef
    26. Hefler, C., Qiu, H.H., Shyy, W.: The interaction of wings in different flight modes of a dragonfly. In: Proc. of 17th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, July 7鈥?0 (2014)
    27. Alexander, D.: Unusual phase relationships between forewings and hindwings in flying dragonflies. J. Exp. Bio. 109, 379鈥?83 (1984)
    28. Ansari, S.A., Phillips, N., Stabler, G., et al.: Experimental investigation of some aspects of insect-like flapping flight aerodynamics for application to micro air vehicles. Exp Fluids 46, 777鈥?98 (2009) CrossRef
    29. Harbig, R., Sheridan, J., Thompson, M.: Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J Fluid Mech. 717, 166鈥?92 (2013) CrossRef
    30. Lu, Y., Shen, G.X., Lai, G.J.: Dual leading-edge vortices on flapping wings. J. Exp. Bio. 209, 5005鈥?016 (2006) CrossRef
    31. Hu, Y., Wang, J.J.: Dual leading-edge vortex structure for flow over a simplified butterfly model. Exp Fluids 50, 1285鈥?292 (2011) CrossRef
    32. Zhou, J., Adrian, R.J., Balachandar, S., et al.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech. 387, 353鈥?96 (1999) CrossRef
    33. Lentink, D., Dickinson, M.H.: Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Exp. Bio. 212, 2705鈥?719 (2009) CrossRef
    34. Wolfinger, M., Rockwell, D.: Flow structure on a rotating wing: Effect of radius of gyration. J. Fluid Mech. 755, 83鈥?10 (2014) CrossRef
    35. Ozen, C., Rockwell, D.: Flow structure on a rotating plate. Exp. Fluids 52, 207鈥?23 (2012) CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Theoretical and Applied Mechanics
    Mechanics, Fluids and Thermodynamics
    Engineering Fluid Dynamics
    Numerical and Computational Methods in Engineering
    Chinese Library of Science
  • 出版者:The Chinese Society of Theoretical and Applied Mechanics; Institute of Mechanics, Chinese Academy of
  • ISSN:1614-3116
文摘
Morphology as well as kinematics is a critical determinant of performance in flapping flight. To understand the effects of the structural traits on aerodynamics of bio-flyers, three rectangular wings with aspect ratios (AR) of 1, 2, and 4 performing hovering-like sinusoidal kinematics at wingtip based Reynolds number of 5 300 are experimentally investigated. Flow structures on sectional cuts along the wing span are compared. Stronger K-H instability is found on the leading edge vortex of wings with higher aspect ratios. Vortex bursting only appears on the outer spanwise locations of high-aspect-ratio wings. The vortex bursting on high-aspect-ratio wings is perhaps one of the reasons why bio-flyers normally have low-aspect-ratio wings. Quantitative analysis exhibits larger dimensionless circulation of the leading edge vortex (LEV) over higher aspect ratio wings except when vortex bursting happens. The average dimensionless circulation of AR1 and AR2 along the span almost equals the dimensionless circulation at the 50% span. The flow structure and the circulation analysis show that the sinusoidal kinematics suppresses breakdown of the LEV compared with simplified flapping kinematics used in similar studies. The Reynolds number effect results on AR4 show that in the current Re range, the overall flow structure is not sensitive to Reynolds number.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700