用户名: 密码: 验证码:
Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia
详细信息    查看全文
  • 作者:Yan-Fang Tao (1)
    Li-Xiao Xu (1)
    Jun Lu (1)
    Shao-Yan Hu (1)
    Fang Fang (1)
    Lan Cao (1)
    Pei-Fang Xiao (1)
    Xiao-Juan Du (2)
    Li-Chao Sun (3)
    Zhi-Heng Li (1)
    Na-Na Wang (1)
    Guang-Hao Su (1)
    Yan-Hong Li (1)
    Gang Li (1)
    He Zhao (1)
    Yi-Ping Li (1)
    Yun-Yun Xu (1)
    Hui-Ting Zhou (1)
    Yi Wu (1)
    Mei-Fang Jin (1)
    Lin Liu (1)
    Xue-Ming Zhu (1)
    Jian Ni (4)
    Jian Wang (1)
    Feng Xing (1)
    Wen-Li Zhao (1)
    Jian Pan (1)

    1. Department of Hematology and Oncology
    ; Children鈥檚 Hospital of Soochow University ; Suzhou ; China
    2. Department of Gastroenterology
    ; the 5th Hospital of Chinese PLA ; Yin chuan ; China
    3. Department of Cell and Molecular Biology
    ; Cancer Institute (Hospital) ; Chinese Academy of Medical Sciences ; Peking Union Medical College ; Beijing ; China
    4. Translational Research Center
    ; Second Hospital ; The Second Clinical School ; Nanjing Medical University ; Nanjing ; China
  • 关键词:Early B ; cell factor 3 ; Pediatric acute myeloid leukemia ; Methylation ; Tumor suppressor ; Real ; time PCR array
  • 刊名:Journal of Experimental & Clinical Cancer Research
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:34
  • 期:1
  • 全文大小:3,733 KB
  • 参考文献:1. Appelbaum FR, Baer MR, Carabasi MH, Coutre SE, Erba HP, Estey E, et al. NCCN practice guidelines for acute myelogenous leukemia. Oncology (Williston Park). 2000;14:53鈥?1.
    2. Sanz GF, Sanz MA, Vallespi T, Canizo MC, Torrabadella M, Garcia S, et al. Two regression models and a scoring system for predicting survival and planning treatment in myelodysplastic syndromes: a multivariate analysis of prognostic factors in 370 patients. Blood. 1989;74:395鈥?08.
    3. Wan H, Zhu J, Chen F, Xiao F, Huang H, Han X, et al. SLC29A1 single nucleotide polymorphisms as independent prognostic predictors for survival of patients with acute myeloid leukemia: an in vitro study. J Exp Clin Cancer Res. 2014;33:90. CrossRef
    4. Im AP, Sehgal AR, Carroll MP, Smith BD, Tefferi A, Johnson DE, et al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies. Leukemia. 2014;28(9):1774鈥?3. CrossRef
    5. Abdel-Wahab O, Levine RL. Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood. 2013;121:3563鈥?2. CrossRef
    6. Graubert T, Walter MJ. Genetics of myelodysplastic syndromes: new insights. Hematology Am Soc Hematol Educ Program. 2011;2011:543鈥?. CrossRef
    7. Bacher U, Haferlach C, Schnittger S, Kohlmann A, Kern W, Haferlach T. Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies. Ann Hematol. 2010;89:643鈥?2. CrossRef
    8. Abdel-Wahab O, Patel J, Levine RL. Clinical implications of novel mutations in epigenetic modifiers in AML. Hematol Oncol Clin North Am. 2011;25:1119鈥?3. CrossRef
    9. Larsson CA, Cote G, Quintas-Cardama A. The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res. 2013;11:815鈥?7. CrossRef
    10. Schoofs T, Muller-Tidow C. DNA methylation as a pathogenic event and as a therapeutic target in AML. Cancer Treat Rev. 2011;37 Suppl 1:S13鈥?. CrossRef
    11. Conway O鈥橞rien E, Prideaux S, Chevassut T. The epigenetic landscape of acute myeloid leukemia. Adv Hematol. 2014;2014:103175.
    12. Berenstein R, Blau IW, Kar A, Cay R, Sindram A, Seide C, et al. Comparative examination of various PCR-based methods for DNMT3A and IDH1/2 mutations identification in acute myeloid leukemia. J Exp Clin Cancer Res. 2014;33:44. CrossRef
    13. Melnick AM. Epigenetics in AML. Best Pract Res Clin Haematol. 2010;23:463鈥?. CrossRef
    14. Mann MR, Bartolomei MS. Epigenetic reprogramming in the mammalian embryo: struggle of the clones. Genome Biol. 2002;3(2):REVIEWS1003. CrossRef
    15. Calvo X, Nomdedeu M, Navarro A, Tejero R, Costa D, Munoz C, et al. High levels of global DNA methylation are an independent adverse prognostic factor in a series of 90 patients with de novo myelodysplastic syndrome. Leuk Res. 2014;38(8):874鈥?1. CrossRef
    16. Pleyer L, Burgstaller S, Girschikofsky M, Linkesch W, Stauder R, Pfeilstocker M, et al. Azacitidine in 302 patients with WHO-defined acute myeloid leukemia: results from the Austrian Azacitidine Registry of the AGMT-Study Group. Ann Hematol. 2014;93(11):1825鈥?8. CrossRef
    17. Daskalakis M, Blagitko-Dorfs N, Hackanson B. Decitabine. Recent Results Cancer Res. 2010;184:131鈥?7. CrossRef
    18. Hagman J, Ramirez J, Lukin K. B lymphocyte lineage specification, commitment and epigenetic control of transcription by early B cell factor 1. Curr Top Microbiol Immunol. 2012;356:17鈥?8.
    19. Lukin K, Fields S, Hartley J, Hagman J. Early B cell factor: regulator of B lineage specification and commitment. Semin Immunol. 2008;20:221鈥?. CrossRef
    20. Green YS, Vetter ML. EBF proteins participate in transcriptional regulation of Xenopus muscle development. Dev Biol. 2011;358:240鈥?0. CrossRef
    21. Gururajan M, Simmons A, Dasu T, Spear BT, Calulot C, Robertson DA, et al. Early growth response genes regulate B cell development, proliferation, and immune response. J Immunol. 2008;181:4590鈥?02. CrossRef
    22. Fields S, Ternyak K, Gao H, Ostraat R, Akerlund J, Hagman J. The 鈥榸inc knuckle鈥?motif of early B cell factor is required for transcriptional activation of B cell-specific genes. Mol Immunol. 2008;45:3786鈥?6. CrossRef
    23. Hirokawa S, Sato H, Kato I, Kudo A. EBF-regulating Pax5 transcription is enhanced by STAT5 in the early stage of B cells. Eur J Immunol. 2003;33:1824鈥?. CrossRef
    24. Liao D. Emerging roles of the EBF family of transcription factors in tumor suppression. Mol Cancer Res. 2009;7:1893鈥?01. CrossRef
    25. Zhao LY, Niu Y, Santiago A, Liu J, Albert SH, Robertson KD, et al. An / EBF3-mediated transcriptional program that induces cell cycle arrest and apoptosis. Cancer Res. 2006;66:9445鈥?2. CrossRef
    26. Kim J, Min SY, Lee HE, Kim WH. Aberrant DNA methylation and tumor suppressive activity of the / EBF3 gene in gastric carcinoma. Int J Cancer. 2012;130:817鈥?6. CrossRef
    27. Inaba T. Epidemiology of leukemia and MDS among atomic bomb survivors in Hiroshima and Nagasaki suggests how abnormal epigenetic regulation contributes to leukemogenesis. Rinsho Ketsueki. 2009;50:1548鈥?2.
    28. Wen-Li Z, Jian W, Yan-Fang T, Xing F, Yan-Hong L, Xue-Ming Z, et al. Inhibition of the ecto-beta subunit of F1F0-ATPase inhibits proliferation and induces apoptosis in acute myeloid leukemia cell lines. J Exp Clin Cancer Res. 2012;31:92. CrossRef
    29. Olek A, Oswald J, Walter J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 1996;24:5064鈥?. CrossRef
    30. Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, Li J, et al. KRAB zinc finger protein ZNF382 is a proapoptotic tumor suppressor that represses multiple oncogenes and is commonly silenced in multiple carcinomas. Cancer Res. 2010;70:6516鈥?6. CrossRef
    31. Yan-Fang T, Jian N, Jun L, Na W, Pei-Fang X, Wen-Li Z, et al. The promoter of miR-663 is hypermethylated in Chinese pediatric acute myeloid leukemia (AML). BMC Med Genet. 2013;14:74. CrossRef
    32. Jian P, Li ZW, Fang TY, Jian W, Zhuan Z, Mei LX, et al. Retinoic acid induces HL-60 cell differentiation via the upregulation of miR-663. J Hematol Oncol. 2011;4:20. CrossRef
    33. Park SH, Kim SK, Choe JY, Moon Y, An S, Park MJ, et al. Hypermethylation of / EBF3 and IRX1 genes in synovial fibroblasts of patients with rheumatoid arthritis. Mol Cells. 2013;35:298鈥?04. CrossRef
    34. Bennett KL, Karpenko M, Lin MT, Claus R, Arab K, Dyckhoff G, et al. Frequently methylated tumor suppressor genes in head and neck squamous cell carcinoma. Cancer Res. 2008;68:4494鈥?. CrossRef
    35. Hong SM, Omura N, Vincent A, Li A, Knight S, Yu J, et al. Genome-wide CpG island profiling of intraductal papillary mucinous neoplasms of the pancreas. Clin Cancer Res. 2012;18:700鈥?2. CrossRef
    36. Yan-Fang T, Dong W, Li P, Wen-Li Z, Jun L, Na W, et al. Analyzing the gene expression profile of pediatric acute myeloid leukemia with real-time PCR arrays. Cancer Cell Int. 2012;12:40. CrossRef
    37. Tao YF, Lu J, Du XJ, Sun LC, Zhao X, Peng L, et al. Survivin selective inhibitor YM155 induce apoptosis in SK-NEP-1 Wilms tumor cells. BMC Cancer. 2012;12:619. CrossRef
    38. Haddick PC, Tom I, Luis E, Quinones G, Wranik BJ, Ramani SR, et al. Defining the ligand specificity of the deleted in colorectal cancer (DCC) receptor. PLoS One. 2014;9:e84823. CrossRef
    39. Meimei L, Peiling L, Baoxin L, Changmin L, Rujin Z, Chunjie H. Lost expression of DCC gene in ovarian cancer and its inhibition in ovarian cancer cells. Med Oncol. 2011;28:282鈥?. CrossRef
    40. Wu M, Xu LG, Li X, Zhai Z, Shu HB. AMID, an apoptosis-inducing factor-homologous mitochondrion-associated protein, induces caspase-independent apoptosis. J Biol Chem. 2002;277:25617鈥?3. CrossRef
    41. Marshall KR, Gong M, Wodke L, Lamb JH, Jones DJ, Farmer PB, et al. The human apoptosis-inducing protein AMID is an oxidoreductase with a modified flavin cofactor and DNA binding activity. J Biol Chem. 2005;280:30735鈥?0. CrossRef
    42. Inbal B, Shani G, Cohen O, Kissil JL, Kimchi A. Death-associated protein kinase-related protein 1, a novel serine/threonine kinase involved in apoptosis. Mol Cell Biol. 2000;20:1044鈥?4. CrossRef
  • 刊物主题:Oncology; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1756-9966
文摘
Background Pediatric acute myeloid leukemia (AML) comprises up to 20% of all childhood leukemia. Recent research shows that aberrant DNA methylation patterning may play a role in leukemogenesis. The epigenetic silencing of the EBF3 locus is very frequent in glioblastoma. However, the expression profiles and molecular function of EBF3 in pediatric AML is still unclear. Methods Twelve human acute leukemia cell lines, 105 pediatric AML samples and 30 normal bone marrow/idiopathic thrombocytopenic purpura (NBM/ITP) control samples were analyzed. Transcriptional level of EBF3 was evaluated by semi-quantitative and real-time PCR. EBF3 methylation status was determined by methylation specific PCR (MSP) and bisulfite genomic sequencing (BGS). The molecular mechanism of EBF3 was investigated by apoptosis assays and PCR array analysis. Results EBF3 promoter was hypermethylated in 10/12 leukemia cell lines. Aberrant EBF3 methylation was observed in 42.9% (45/105) of the pediatric AML samples using MSP analysis, and the BGS results confirmed promoter methylation. EBF3 expression was decreased in the AML samples compared with control. Methylated samples revealed similar survival outcomes by Kaplan-Meier survival analysis. EBF3 overexpression significantly inhibited cell proliferation and increased apoptosis. Real-time PCR array analysis revealed 93 dysregulated genes possibly implicated in the apoptosis of EBF3-induced AML cells. Conclusion In this study, we firstly identified epigenetic inactivation of EBF3 in both AML cell lines and pediatric AML samples for the first time. Our findings also showed for the first time that transcriptional overexpression of EBF3 could inhibit proliferation and induce apoptosis in AML cells. We identified 93 dysregulated apoptosis-related genes in EBF3-overexpressing, including DCC, AIFM2 and DAPK1. Most of these genes have never been related with EBF3 over expression. These results may provide new insights into the molecular mechanism of EBF3-induced apoptosis; however, further research will be required to determine the underlying details. Our findings suggest that EBF3 may act as a putative tumor suppressor gene in pediatric AML.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700