用户名: 密码: 验证码:
Cellular Transplantation-Based Evolving Treatment Options in Spinal Cord Injury
详细信息    查看全文
  • 作者:Mao-cheng Wu (1) (2)
    Hu Yuan (1)
    Kang-jie Li (1)
    De-Lai Qiu (2) (3)

    1. Department of Osteology
    ; Affiliated Hospital of Yanbian University ; Yanji ; Jilin ; China
    2. Cellular Function Research Center
    ; Yanbian University ; 977 GongYuan Road ; Yanji ; Jilin ; 133002 ; China
    3. Department of Physiology and Pathophysiology
    ; College of Medicine ; Yanbian University ; 977 GongYuan Road ; Yanji ; Jilin ; 133002 ; China
  • 关键词:Spinal cord injury (SCI) ; Cellular transplantation ; Neurologic deficit ; Stem cell therapy
  • 刊名:Cell Biochemistry and Biophysics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:71
  • 期:1
  • 页码:1-8
  • 全文大小:197 KB
  • 参考文献:1. Schinkel, C., Frangen, T. M., Kmetic, A., Andress, H. J., & Muhr, G. (2006). Timing of thoracic spine stabilization in trauma patients: impact on clinical course and outcome. / Journal of Trauma, / 61, 156鈥?60. CrossRef
    2. Oyinbo, C. A. (2011). Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. / Acta Neurobiologiae Experimentalis (Warsaw), / 71, 281鈥?99.
    3. Profyris, C., Cheema, S. S., Zang, D., Azari, M. F., Boyle, K., & Petratos, S. (2004). Degenerative and regenerative mechanisms governing spinal cord injury. / Neurobiology of Diseases, / 15, 415鈥?36. CrossRef
    4. Dumont, R. J., Okonkwo, D. O., Verma, S., Hurlbert, R. J., Boulos, P. T., Ellegala, D. B., et al. (2001). Acute spinal cord injury, part I: pathophysiologic mechanisms. / Clinical Neuropharmacology, / 24, 254鈥?64. CrossRef
    5. Tator, C. H., & Fehlings, M. G. (1991). Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. / Journal of Neurosurgery, / 75, 15鈥?6. CrossRef
    6. Takami, T., Oudega, M., Bates, M. L., Wood, P. M., Kleitman, N., & Bunge, M. B. (2002). Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord. / Journal of Neuroscience, / 22, 6670鈥?681.
    7. Xu, X. M., Guenard, V., Kleitman, N., & Bunge, M. B. (1995). Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. / Journal of Comparative Neurology, / 351, 145鈥?60. CrossRef
    8. Pearse, D. D., Sanchez, A. R., Pereira, F. C., Andrade, C. M., Puzis, R., Pressman, Y., et al. (2007). Transplantation of Schwann cells and/or olfactory ensheathing glia into the contused spinal cord: survival, migration, axon association, and functional recovery. / Glia, / 55, 976鈥?000. CrossRef
    9. Pearse, D. D., Marcillo, A. E., Oudega, M., Lynch, M. P., Wood, P. M., & Bunge, M. B. (2004). Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? / Journal of Neurotrauma, / 21, 1223鈥?239. CrossRef
    10. Bregman, B. S., Coumans, J. V., Dai, H. N., Kuhn, P. L., Lynskey, J., McAtee, M., et al. (2002). Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury. / Progress in Brain Research, / 137, 257鈥?73. CrossRef
    11. Guest, J. D., Rao, A., Olson, L., Bunge, M. B., & Bunge, R. P. (1997). The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. / Experimental Neurology, / 148, 502鈥?22. CrossRef
    12. Iwanami, A., Yamane, J., Katoh, H., Nakamura, M., Momoshima, S., Ishii, H., et al. (2005). Establishment of graded spinal cord injury model in a nonhuman primate: the common marmoset. / Journal of Neuroscience Research, / 80, 172鈥?81. CrossRef
    13. Barnett, S. C., Franklin, R. J., & Blakemore, W. F. (1993). In vitro and in vivo analysis of a rat bipotential O-2A progenitor cell line containing the temperature-sensitive mutant gene of the SV40 large T antigen. / European Journal of Neuroscience, / 5, 1247鈥?260. CrossRef
    14. Barnett, S. C., & Riddell, J. S. (2004). Olfactory ensheathing cells (OECs) and the treatment of CNS injury: advantages and possible caveats. / Journal of Anatomy, / 204, 57鈥?7. CrossRef
    15. Thompson, R. J., Roberts, B., Alexander, C. L., Williams, S. K., & Barnett, S. C. (2000). Comparison of neuregulin-1 expression in olfactory ensheathing cells, Schwann cells and astrocytes. / Journal of Neuroscience Research, / 61, 172鈥?85. CrossRef
    16. Vincent, A. J., Taylor, J. M., Choi-Lundberg, D. L., West, A. K., & Chuah, M. I. (2005). Genetic expression profile of olfactory ensheathing cells is distinct from that of Schwann cells and astrocytes. / Glia, / 51, 132鈥?47. CrossRef
    17. Kocsis, J. D., Lankford, K. L., Sasaki, M., & Radtke, C. (2009). Unique in vivo properties of olfactory ensheathing cells that may contribute to neural repair and protection following spinal cord injury. / Neuroscience Letters, / 456, 137鈥?42. CrossRef
    18. Bonfanti, L., Olive, S., Poulain, D. A., & Theodosis, D. T. (1992). Mapping of the distribution of polysialylated neural cell adhesion molecule throughout the central nervous system of the adult rat: an immunohistochemical study. / Neuroscience, / 49, 419鈥?36. CrossRef
    19. Wainwright, S. R., & Galea, L. A. (2013). The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. / Neural plasticity, / 2013, 805497. CrossRef
    20. Lee, Y. S., Hsiao, I., & Lin, V. W. (2002). Peripheral nerve grafts and aFGF restore partial hindlimb function in adult paraplegic rats. / Journal of Neurotrauma, / 19, 1203鈥?216. CrossRef
    21. C么t茅, M. P., Amin, A. A., Tom, V. J., & Houle, J. D. (2011). Peripheral nerve grafts support regeneration after spinal cord injury. / Neurotherapeutics, / 8, 294鈥?03. CrossRef
    22. Levi, A. D., Dancausse, H., Li, X., Duncan, S., Horkey, L., & Oliviera, M. (2002). Peripheral nerve grafts promoting central nervous system regeneration after spinal cord injury in the primate. / Journal of Neurosurgery, / 96, 197鈥?05.
    23. Wu, J. C., Huang, W. C., Chen, Y. C., Tu, T. H., Tsai, Y. A., Huang, S. F., et al. (2011). Acidic fibroblast growth factor for repair of human spinal cord injury: a clinical trial. / Journal of Neurosurgery, / 15, 216鈥?27.
    24. Reier, P. J., Stokes, B. T., Thompson, F. J., & Anderson, P. J. (1992). Fetal cell grafts into resection and contusion/compression injuries of the rat and cat spinal cord. / Experimental Neurology, / 115, 177鈥?88. CrossRef
    25. Coumans, J. V., Lin, T. T., Dai, H. N., MacArthur, L., McAtee, M., Nash, C., et al. (2001). Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. / The Journal of Neuroscience, / 21(23), 9334鈥?344.
    26. Reier, P. J. (2004). Cellular transplantation strategies for spinal cord injury and translational neurobiology. / NeuroRx, / 1, 424鈥?51. CrossRef
    27. Thompson, F. J., Reier, P. J., Uthman, B., Mott, S., Fessler, R. G., Behrman, A., et al. (2001). Neurophysiological assessment of the feasibility and safety of neural tissue transplantation in patients with syringomyelia. / Journal of Neurotrauma, / 18, 931鈥?45. CrossRef
    28. Kuhlmann, T., Wendling, U., Nolte, C., Zipp, F., Maruschak, B., Stadelmann, C., et al. (2002). Differential regulation of myelin phagocytosis by macrophages/microglia, involvement of target myelin, Fc receptors and activation by intravenous immunoglobulins. / Journal of Neuroscience Research, / 67, 185鈥?90. CrossRef
    29. Rapalino, O., Lazarov-Spiegler, O., Agranov, E., Velan, G. J., Yoles, E., Fraidakis, M., et al. (1998). Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. / Nature Medicine, / 40, 814鈥?21. CrossRef
    30. Moon, L., & Bunge, M. B. (2005). From animal models to humans: strategies for promoting CNS axon regeneration and recovery of limb function after spinal cord injury. / Journal of Neurologic Physical Therapy, / 29, 55鈥?9. CrossRef
    31. Popovich, P. G., Guan, Z., Wei, P., Huitinga, I., van Rooijen, N., & Stokes, B. T. (1999). Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. / Experimental Neurology, / 158, 351鈥?65. CrossRef
    32. Knoller, N., Auerbach, G., Fulga, V., Zelig, G., Attias, J., Bakimer, R., et al. (2005). Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results. / Journal of Neurosurgery, / 3, 173鈥?81.
    33. Reynolds, B. A., & Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. / Science, / 255, 1707鈥?710. CrossRef
    34. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. / Cell, / 126, 663鈥?76. CrossRef
    35. Hitoshi, S., Seaberg, R. M., Koscik, C., Alexson, T., Kusunoki, S., Kanazawa, I., et al. (2004). Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. / Genes & Development, / 18, 1806鈥?811. CrossRef
    36. Miyata, T., Kawaguchi, A., Okano, H., & Ogawa, M. (2001). Asymmetric inheritance of radial glial fibers by cortical neurons. / Neuron, / 31, 727鈥?41. CrossRef
    37. Noctor, S. C., Flint, A. C., Weissman, T. A., Dammerman, R. S., & Kriegstein, A. R. (2001). Neurons derived from radial glial cells establish radial units in neocortex. / Nature, / 409, 714鈥?20. CrossRef
    38. Temple, S. (2001). The development of neural stem cells. / Nature, / 414, 112鈥?17. CrossRef
    39. Okada, Y., Matsumoto, A., Shimazaki, T., Enoki, R., Koizumi, A., Ishii, S., et al. (2008). Spatiotemporal recapitulation of central nervous system development by murine embryonic stem cell-derived neural stem/progenitor cells. / Stem Cells, / 26, 3086鈥?098. CrossRef
    40. Miura, K., Okada, Y., Aoi, T., Okada, A., Takahashi, K., Okita, K., et al. (2009). Variation in the safety of induced pluripotent stem cell lines. / Nature Biotechnology, / 27, 743鈥?45. CrossRef
    41. Windebank, A. J. (2009). Current tissue engineering and novel therapeutic approaches to axonal regeneration following spinal cord injury using polymer scaffolds. / Respiratory Physiology & Neurobiology, / 169, 183鈥?99. CrossRef
    42. Ji, W., Hu, S., Zhou, J., Wang, G., Wang, K., & Zhang, Y. (2014). Tissue engineering is a promising method for the repair of spinal cord injuries (Review). / Experimental and therapeutic medicine, / 7, 523鈥?28.
    43. Jain, A., Kim, Y. T., McKeon, R. J., & Bellamkonda, R. V. (2006). / In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. / Biomaterials, / 27, 497鈥?04. CrossRef
    44. Cholas, R., Hsu, H. P., & Spector, M. (2012). Collagen scaffolds incorporating select therapeutic agents to facilitate a reparative response in a standardized hemiresection defect in the rat spinal cord. / Tissue Engineering Part A, / 18, 2158鈥?172. CrossRef
    45. Chen, N., Zhang, Z., Soontornworajit, B., Zhou, J., & Wang, Y. (2012). Cell adhesion on an artificial extracellular matrix using aptamer functionalized PEG hydrogels. / Biomaterials, / 33, 1353鈥?362. CrossRef
    46. McCall, J., Weidner, N., & Blesch, A. (2012). Neurotrophic factors in combinatorial approaches for spinal cord regeneration. / Cell and Tissue Research, / 349, 27鈥?7. CrossRef
    47. Sharma, H. S. (2007). Neurotrophic factors in combination: a possible new therapeutic strategy to influence pathophysiology of spinal cord injury and repair mechanisms. / Current Pharmaceutical Design, / 13, 1841鈥?874. CrossRef
    48. Berry, A., Bindocci, E., & Alleva, E. (2012). NGF, brain and behavioral plasticity. / Neural plasticity, / 2012, 784040. CrossRef
    49. Allen, S. J., Watson, J. J., Shoemark, D. K., Barua, N. U., & Patel, N. K. (2013). GDNF, NGF and BDNF as therapeutic options for neurodegeneration. / Pharmacology & Therapeutics, / 138, 155鈥?75. CrossRef
    50. Weishaupt, N., Li, S., Di Pardo, A., Sipione, S., & Fouad, K. (2013). Synergistic effects of BDNF and rehabilitative training on recovery after cervical spinal cord injury. / Behavioural Brain Research, / 239, 31鈥?2. CrossRef
    51. Mantilla, C. B., Gransee, H. M., Zhan, W. Z., & Sieck, G. C. (2013). Motoneuron BDNF/TrkB signaling enhances functional recovery after cervical spinal cord injury. / Experimental Neurology, / 247, 101鈥?09. CrossRef
    52. Stokols, S., Sakamoto, J., Breckon, C., Holt, T., Weiss, J., & Tuszynski, M. H. (2006). Templated agarose scaffolds support linear axonal regeneration. / Tissue Engineering, / 12, 2777鈥?787. CrossRef
    53. Shumsky, J. S., Tobias, C. A., Tumolo, M., Long, W. D., Giszter, S. F., & Murray, M. (2003). Delayed transplantation of fibroblasts genetically modified to secrete BDNF and NT-3 into a spinal cord injury site is associated with limited recovery of function. / Experimental Neurology, / 184, 114鈥?30. CrossRef
    54. Chen, Q., Smith, G. M., & Shine, H. D. (2008). Immune activation is required for NT-3-induced axonal plasticity in chronic spinal cord injury. / Experimental Neurology, / 209, 497鈥?09. CrossRef
    55. Wang, X., Li, Y., Gao, Y., Chen, X., Yao, J., Lin, W., et al. (2013). Combined use of spinal cord-mimicking partition type scaffold architecture and neurotrophin-3 for surgical repair of completely transected spinal cord in rats. / Journal of Biomaterials Science, Polymer Edition, / 24, 927鈥?39. CrossRef
    56. Hara, T., Fukumitsu, H., Soumiya, H., Furukawa, Y., & Furukawa, S. (2012). Injury-induced accumulation of glial cell line-derived neurotrophic factor in the rostral part of the injured rat spinal cord. / International Journal of Molecular Sciences, / 13, 13484鈥?3500. CrossRef
    57. Guo, J. S., Zeng, Y. S., Li, H. B., Huang, W. L., Liu, R. Y., Li, X. B., et al. (2007). Cotransplant of neural stem cells and NT-3 gene modified Schwann cells promote the recovery of transected spinal cord injury. / Spinal Cord, / 45, 15鈥?4. CrossRef
    58. Foust, K. D., Flotte, T. R., Reier, P. J., & Mandel, R. J. (2008). Recombinant adeno-associated virus-mediated global anterograde delivery of glial cell line-derived neurotrophic factor to the spinal cord: comparison of rubrospinal and corticospinal tracts in the rat. / Human Gene Therapy, / 19, 71鈥?2. hum.2007.104" target="_blank" title="It opens in new window">CrossRef
    59. Morizono, K., & Chen, I. S. (2005). Targeted gene delivery by intravenous injection of retroviral vectors. / Cell Cycle, / 4, 854鈥?56. CrossRef
  • 刊物主题:Biochemistry, general; Pharmacology/Toxicology; Biotechnology; Cell Biology; Biophysics and Biological Physics;
  • 出版者:Springer US
  • ISSN:1559-0283
文摘
Spinal cord injury (SCI) often represents a condition of permanent neurologic deficit. It has been possible to understand and delineate the mechanisms contributing to loss of function following primary injury. The clinicians might hope to improve the outcome in SCI injury by designing treatment strategies that could target these secondary mechanisms of response to injury. However, the approaches like molecular targeting of the neurons or surgical interventions have yielded very limited success till date. In recent times, a great thrust is put on to the cellular transplantation mode of treatment strategies to combat SCI problems so as to gain maximum functional recovery. In this review, we discuss about the various cellular transplantation strategies that could be employed in the treatment of SCI. The success of such cellular approaches involving Schwann cells, olfactory ensheathing cells, peripheral nerve, embryonic CNS tissue and activated macrophage has been supported by a number of reports and has been detailed here. Many of these cell transplantation strategies have reached the clinical trial stages. Also, the evolving field of stem cell therapy has made it possible to contemplate the role of both embryonic stem cells and induced pluripotent stem cells to stimulate the differentiation of neurons when transplanted in SCI models. Moreover, the roles of tissue engineering techniques and synthetic biomaterials have also been explained with their beneficial and deleterious effects. Many of these cell-based therapeutic approaches have been able to cause only a little change in recovery and a combinatorial approach involving more than one strategy are now being tried out to successfully treat SCI and improve functional recovery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700