用户名: 密码: 验证码:
Tumor boundary detection in ultrasound imagery using multi-scale generalized gradient vector flow
详细信息    查看全文
  • 作者:Yi Le (1)
    Xianze Xu (1)
    Li Zha (2)
    Wencheng Zhao (1)
    Yanyan Zhu (2)

    1. Electronic Information School
    ; Wuhan University ; 16 Luojiashan Road ; Wuchang District ; Wuhan ; 430079 ; China
    2. Ultrasonic Department
    ; Hubei Cancer Hospital ; 116 Zhuodaoquan South Road ; Wuchang District ; Wuhan ; 430079 ; China
  • 关键词:HIFU ablation system ; Generalized gradient vector flow ; Tumor boundary detection ; Distance map ; Multi ; scale edge map
  • 刊名:Journal of Medical Ultrasonics
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:42
  • 期:1
  • 页码:25-38
  • 全文大小:2,673 KB
  • 参考文献:1. Kennedy JE. High-intensity focused ultrasound in the treatment of solid tumours. Nat Rev Cancer. 2005;5:321鈥?. CrossRef
    2. Crouzet S, Rebillard X, Chevallier D, et al. Multicentric oncologic outcomes of high-intensity focused ultrasound for localized prostate cancer in 803 patients. Eur Urol. 2010;58:559鈥?6. CrossRef
    3. Wu F, Wang ZB, Zhu H, et al. Extracorporeal high intensity focused ultrasound treatment for patients with breast cancer. Breast Cancer Res Treat. 2005;92:51鈥?0. CrossRef
    4. Kennedy JE, Wu F, Ter Haar GR, et al. High-intensity focused ultrasound for the treatment of liver tumours. Ultrasonics. 2004;42:931鈥?. CrossRef
    5. Kennedy JE, Ter Haar GR, Cranston D. High intensity focused ultrasound: surgery of the future? Br J Radiol. 2003;76:590鈥?. CrossRef
    6. Rouvi猫re O, Gelet A, Crouzet S, et al. Prostate focused ultrasound focal therapy鈥攊maging for the future. Nat Rev Clin Oncol. 2012;9:721鈥?. CrossRef
    7. Curiel L, Souchon R, Rouviere O, et al. Elastography for the follow-up of high-intensity focused ultrasound prostate cancer treatment: initial comparison with MRI. Ultrasound Med Biol. 2005;31:1461鈥?. CrossRef
    8. Solovchuk MA, Sheu TWH, Thiriet M, et al. On a computational study for investigating acoustic streaming and heating during focused ultrasound ablation of liver tumor. Appl Therm Eng. 2013;56:62鈥?6. CrossRef
    9. Wu F, Wang ZB, Chen WZ, et al. Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview. Ultrason Sonochem. 2004;11:149鈥?4. CrossRef
    10. Wu F, Wang ZB, Zhu H, et al. Feasibility of US-guided high-intensity focused ultrasound treatment in patients with advanced pancreatic cancer: initial experience 1. Radiology. 2005;236:1034鈥?0. CrossRef
    11. Wu Q, Zhou Q, Zhu Q, et al. Noninvasive cardiac arrhythmia therapy using high-intensity focused ultrasound (HIFU) ablation. Int J Cardiol. 2013;166:e28鈥?0. CrossRef
    12. Zhang L, Chen WZ, Liu YJ, et al. Feasibility of magnetic resonance imaging-guided high intensity focused ultrasound therapy for ablating uterine fibroids in patients with bowel lies anterior to uterus. Eur J Radiol. 2010;73:396鈥?03. CrossRef
    13. Noble JA, Boukerroui D. Ultrasound image segmentation: a survey. IEEE Trans Med Imaging. 2006;25:987鈥?010. CrossRef
    14. Savelonas MA, Iakovidis DK, Legakis I, et al. Active contours guided by echogenicity and texture for delineation of thyroid nodules in ultrasound images. IEEE Trans Inf Technol Biomed. 2009;13:519鈥?7. CrossRef
    15. Kass M, Witkin A, Terzopoulos D. Snakes: active contour models. Int J Comput Vis. 1988;1:321鈥?1. CrossRef
    16. Cohen LD. On active contour models and balloons. CVGIP Image Underst. 1991;53:211鈥?. CrossRef
    17. Cohen LD, Cohen I. Finite-element methods for active contour models and balloons for 2-D and 3-D images. IEEE Trans Pattern Anal Mach Intell. 1993;15:1131鈥?7. CrossRef
    18. Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process. 1998;7:359鈥?9. CrossRef
    19. Wu Y, Wang Y, Jia Y. Adaptive diffusion flow active contours for image segmentation. Comput Vis Image Underst. 2013;117:1421鈥?5. CrossRef
    20. Li Z, Xu X, Le Y, et al. An improved balloon snake for HIFU image-guided system. J Med Ultrasonics. doi:10.1007/s10396-014-0536-x .
    21. Xu C, Prince JL. Generalized gradient vector flow external forces for active contours. Sig Process. 1998;71:131鈥?. CrossRef
    22. Tang J, Acton ST. Vessel boundary tracking for intravital microscopy via multiscale gradient vector flow snakes. IEEE Trans Biomed Eng. 2004;51:316鈥?4. CrossRef
    23. Tang J, Millington S, Acton ST, et al. Surface extraction and thickness measurement of the articular cartilage from MR images using directional gradient vector flow snakes. IEEE Trans Biomed Eng. 2006;53:896鈥?07. CrossRef
    24. Seroussi I, Veikherman D, Ofer N, et al. Segmentation and tracking of live cells in phase-contrast images using directional gradient vector flow for snakes. J Microsc. 2012;247:137鈥?6. CrossRef
    25. Le Y, Xu X, Li Z, et al. A multi-step directional generalized gradient vector flow snake for target tumor segmentation in US-guided high-intensity focused ultrasound ablation. Biomed Signal Process Control. 2013;8:811鈥?1. CrossRef
    26. Ren D, Zuo W, Zhao X, et al. Fast gradient vector flow computation based on augmented Lagrangian method. Pattern Recogn Lett. 2012;34:219鈥?5. CrossRef
    27. Chuang CH, Lie WN. A downstream algorithm based on extended gradient vector flow field for object segmentation. IEEE Trans Image Process. 2004;13:1379鈥?2. CrossRef
    28. Qin L, Zhu C, Zhao Y, et al. Generalized gradient vector flow for snakes: new observations, analysis and improvement. IEEE Trans Circuits Syst Video Technol. 2013;23:883鈥?7. CrossRef
    29. Zhou H, Li X, Schaefer G, et al. Mean shift based gradient vector flow for image segmentation. Comput Vis Image Underst. 2013;117:1004鈥?6. CrossRef
    30. Lindeberg T. Scale-space theory: a basic tool for analyzing structures at different scales. J Appl Stat. 1994;21:225鈥?0. CrossRef
    31. Vainberg MM. Variational method and method of monotone operators in the theory of nonlinear equations. New York: Wiley; 1973.
  • 刊物主题:Ultrasound; Imaging / Radiology;
  • 出版者:Springer Japan
  • ISSN:1613-2254
文摘
Purpose As a key technology in high-intensity focused ultrasound (HIFU) ablation systems, a precise ultrasound image segmentation method for tumor boundary detection is helpful for ablation of tumors and avoiding tumor recurrence. This study explores a new deformable snake model called multi-scale generalized gradient vector flow (MS-GGVF) to segment ultrasound images in HIFU ablation. Methods The main idea of the technique is dealing with two issues including spurious boundary attenuation and setting the standard deviation of the Gaussian filter. We assign the standard deviation as scales to build the MS-GGVF model and create a signed distance map to use its gradient direction information and magnitude information to refine the multi-scale edge map by attenuating spurious boundaries and highlighting the real boundary. In addition, a fast generalized gradient vector flow computation algorithm based on an augmented Lagrangian method is introduced to calculate the external force vector field to improve the computation efficiency of our model. Results The experimental segmentations were similar to the ground truths delineated by two medical physicians with high area overlap measure and low mean contour distance. Conclusion The experimental results demonstrate that the proposed algorithm is robust, reliable, and precise for tumor boundary detection in HIFU ablation systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700